研究生: |
羅泓昇 Luo, Hong-Sheng |
---|---|
論文名稱: |
邏輯演繹序列串聯質譜法應用於N-聚醣的結構鑑定 Logically Derived Sequence Tandem Mass Spectrometry for Structural Determination of N-Glycans |
指導教授: |
倪其焜
Ni, Chi-Kung 陳頌方 Chen, Sung-Fang |
口試委員: |
倪其焜
Ni, Chi-Kung 陳頌方 Chen, Sung-Fang 林震煌 Lin, Cheng-Huang |
口試日期: | 2022/07/20 |
學位類別: |
碩士 Master |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2022 |
畢業學年度: | 110 |
語文別: | 中文 |
論文頁數: | 222 |
中文關鍵詞: | N-聚醣 、結構 、邏輯演繹序列串聯質譜法 、碰撞誘導解離 、豆子 、肉 |
英文關鍵詞: | N-glycans, structure, logically derived sequence tandem mass spectrometry, collision-induced dissociation, beans, meat |
研究方法: | 實驗設計法 、 比較研究 |
DOI URL: | http://doi.org/10.6345/NTNU202201234 |
論文種類: | 學術論文 |
相關次數: | 點閱:210 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
1. Varki, A.; Cummings, R. D.; Esko, J. D.; Stanley, P.; Hart, G. W.; Aebi, M.; Darvill, A. G.; Kinoshita, T.; Packer, N. H.; Prestegard, J. H., Essentials of Glycobiology [internet]. 2015.
2. Domon, B.; Costello, C. E., A systematic nomenclature for carbohydrate fragmentations in FAB-MS/MS spectra of glycoconjugates. Glycoconjugate journal 1988, 5 (4), 397-409.
3. Shental-Bechor, D.; Levy, Y., Effect of glycosylation on protein folding: a close look at thermodynamic stabilization. Proceedings of the National Academy of Sciences 2008, 105 (24), 8256-8261.
4. Bertozzi, C. R.; Kiessling; L, L., Chemical glycobiology. Science 2001, 291 (5512), 2357-2364.
5. Strasser, R.; Seifert, G.; Doblin, M. S.; Johnson, K. L.; Ruprecht, C.; Pfrengle, F.; Bacic, A.; Estevez, J. M., Cracking the “Sugar Code”: A snapshot of N-and O-glycosylation pathways and functions in plants cells. Frontiers in Plant Science 2021, 12.
6. Aebi, M.; Bernasconi, R.; Clerc, S.; Molinari, M., N-glycan structures: recognition and processing in the ER. Trends in biochemical sciences 2010, 35 (2), 74-82.
7. Prien, J. M.; Ashline, D. J.; Lapadula, A. J.; Zhang, H.; Reinhold, V. N., The high mannose glycans from bovine ribonuclease B isomer characterization by ion trap MS. Journal of the American Society for Mass Spectrometry 2008, 20 (4), 539-556.
8. Live, D. H.; Kumar, R. A.; Beebe, X.; Danishefsky, S. J., Conformational influences of glycosylation of a peptide: a possible model for the effect of glycosylation on the rate of protein folding. Proceedings of the National Academy of Sciences 1996, 93 (23), 12759-12761.
9. Duus, J. Ø.; Gotfredsen, C. H.; Bock, K., Carbohydrate structural determination by NMR spectroscopy: modern methods and limitations. Chemical reviews 2000, 100 (12), 4589-4614.
10. Zaia, J., Mass spectrometry of oligosaccharides. Mass spectrometry reviews 2004, 23 (3), 161-227.
11. Dell, A.; Morris, H. R., Glycoprotein structure determination by mass spectrometry. Science 2001, 291 (5512), 2351-2356.
12. Stephens, E.; Maslen, S. L.; Green, L. G.; Williams, D. H., Fragmentation characteristics of neutral N-linked glycans using a MALDI-TOF/TOF tandem mass spectrometer. Analytical chemistry 2004, 76 (8), 2343-2354.
13. Viseux, N.; de Hoffmann, E.; Domon, B., Structural assignment of permethylated oligosaccharide subunits using sequential tandem mass spectrometry. Analytical chemistry 1998, 70 (23), 4951-4959.
14. Li, D.; Her, G., Structural analysis of chromophore‐labeled disaccharides and oligosaccharides by electrospray ionization mass spectrometry and high‐performance liquid chromatography/electrospray ionization mass spectrometry. Journal of mass spectrometry 1998, 33 (7), 644-652.
15. Hsu, H. C.; Liew, C. Y.; Huang, S.-P.; Tsai, S.-T.; Ni, C.-K., Simple approach for de novo structural identification of mannose trisaccharides. Journal of The American Society for Mass Spectrometry 2017, 29 (3), 470-480.
16. Hsu, H. C.; Liew, C. Y.; Huang, S.-P.; Tsai, S.-T.; Ni, C.-K., Simple method for de novo structural determination of underivatised glucose oligosaccharides. Scientific reports 2018, 8 (1), 1-12.
17. Tsai, S. T.; Liew, C. Y.; Hsu, C.; Huang, S. P.; Weng, W. C.; Kuo, Y. H.; Ni, C. K., Automatic full glycan structural determination through logically derived sequence tandem mass spectrometry. ChemBioChem 2019, 20 (18), 2351-2359.
18. Hsu, H. C.; Huang, S.-P.; Liew, C. Y.; Tsai, S.-T.; Ni, C.-K., De novo structural determination of mannose oligosaccharides by using a logically derived sequence for tandem mass spectrometry. Analytical and bioanalytical chemistry 2019, 411 (15), 3241-3255.
19. Huang, S.-P.; Hsu, H. C.; Liew, C. Y.; Tsai, S.-T.; Ni, C.-K., Logically derived sequence tandem mass spectrometry for structural determination of Galactose oligosaccharides. Glycoconjugate Journal 2021, 38 (2), 177-189.
20. Huang, S. P.; Hsu, H. C.; Liew, C. Y.; Tsai, S. T.; Ni, C. K., Logically derived sequence tandem mass spectrometry for structural determination of Galactose oligosaccharides. Glycoconj J 2021, 38 (2), 177-189.
21. Liew, C. Y.; Yen, C.-C.; Chen, J.-L.; Tsai, S.-T.; Pawar, S.; Wu, C.-Y.; Ni, C.-K., Structural identification of N-glycan isomers using logically derived sequence tandem mass spectrometry. Communications Chemistry 2021, 4 (1).
22. Ni, C.-K.; Hsu, H. C.; Liew, C. Y.; Huang, S.-P.; Tsai, S.-T., Modern Mass Spectrometry Techniques for Oligosaccharide Structure Determination: Logically Derived Sequence Tandem Mass Spectrometry for Automatic Oligosaccharide Structural Determination. In Comprehensive Glycoscience, 2021; pp 309-339.
23. Sathe, S. K.; Deshpande, S.; Salunkhe, D.; Rackis, J. J., Dry beans of phaseolus. A review. Part 1. Chemical composition: Proteins. Critical Reviews in Food Science & Nutrition 1984, 20 (1), 1-46.
24. Wilson, I. B.; Zeleny, R.; Kolarich, D.; Staudacher, E.; Stroop, C. J.; Kamerling, J. P.; Altmann, F., Analysis of Asn-linked glycans from vegetable foodstuffs: widespread occurrence of Lewis a, core α1, 3‐linked fucose and xylose substitutions. Glycobiology 2001, 11 (4), 261-274.
25. Shi, Z.; Yin, B.; Li, Y.; Zhou, G.; Li, C.; Xu, X.; Luo, X.; Zhang, X.; Qi, J.; Voglmeir, J.; Liu, L., N-Glycan Profile as a Tool in Qualitative and Quantitative Analysis of Meat Adulteration. J Agric Food Chem 2019, 67 (37), 10543-10551.
26. Tarentino, A. L.; Gomez, C. M.; Plummer Jr, T. H., Deglycosylation of asparagine-linked glycans by peptide: N-glycosidase F. Biochemistry 1985, 24 (17), 4665-4671.
27. Wang, C.; Yang, M.; Gao, X.; Li, C.; Zou, Z.; Han, J.; Huang, L.; Wang, Z., The ammonia-catalyzed release of glycoprotein N-glycans. Glycoconjugate Journal 2018, 35 (4), 411-420.
28. Yang, M.; Wei, M.; Wang, C.; Lu, Y.; Jin, W.; Gao, X.; Li, C.; Wang, L.; Huang, L.; Wang, Z., Separation and preparation of N-glycans based on ammonia-catalyzed release method. Glycoconj J 2020, 37 (2), 165-174.
29. Hernández-Hernández, A.; Rodríguez-Navarro, A. B.; Gómez-Morales, J.; Jiménez-López, C.; Nys, Y.; García-Ruiz, J. M., Influence of model globular proteins with different isoelectric points on the precipitation of calcium carbonate. Crystal Growth and Design 2008, 8 (5), 1495-1502.
30. Rothstein, F., Differential precipitation of proteins: science and technology. Protein purification process engineering 2019, 115-208.
31. Yoshikawa, H.; Hirano, A.; Arakawa, T.; Shiraki, K., Mechanistic insights into protein precipitation by alcohol. International journal of biological macromolecules 2012, 50 (3), 865-871.
32. Zellner, M.; Winkler, W.; Hayden, H.; Diestinger, M.; Eliasen, M.; Gesslbauer, B.; Miller, I.; Chang, M.; Kungl, A.; Roth, E., Quantitative validation of different protein precipitation methods in proteome analysis of blood platelets. Electrophoresis 2005, 26 (12), 2481-2489.
33. Simpson, N. J., Solid-phase extraction: principles, techniques, and applications. CRC press: 2000.
34. Thurman, E. M.; Mills, M. S., Solid-phase extraction: principles and practice. Wiley New York: 1998; Vol. 16.
35. Sun, T.; Chance, R. R.; Graessley, W. W.; Lohse, D. J., A study of the separation principle in size exclusion chromatography. Macromolecules 2004, 37 (11), 4304-4312.
36. Wuhrer, M.; de Boer, A. R.; Deelder, A. M., Structural glycomics using hydrophilic interaction chromatography (HILIC) with mass spectrometry. Mass spectrometry reviews 2009, 28 (2), 192-206.
37. Buszewski, B.; Noga, S., Hydrophilic interaction liquid chromatography (HILIC)—a powerful separation technique. Analytical and bioanalytical chemistry 2012, 402 (1), 231-247.
38. Boersema, P. J.; Mohammed, S.; Heck, A. J., Hydrophilic interaction liquid chromatography (HILIC) in proteomics. Analytical and bioanalytical chemistry 2008, 391 (1), 151-159.
39. Young, C.; Condina, M. R.; Briggs, M. T.; Moh, E. S.; Kaur, G.; Oehler, M. K.; Hoffmann, P., In-house packed porous graphitic carbon columns for liquid chromatography-mass spectrometry analysis of N-glycans. Frontiers in chemistry 2021, 9, 388.
40. She, Y.-M.; Tam, R. Y.; Li, X.; Rosu-Myles, M.; Sauvé, S., Resolving isomeric structures of native glycans by nanoflow porous graphitized carbon chromatography–mass spectrometry. Analytical chemistry 2020, 92 (20), 14038-14046.
41. West, C.; Elfakir, C.; Lafosse, M., Porous graphitic carbon: a versatile stationary phase for liquid chromatography. Journal of chromatography A 2010, 1217 (19), 3201-3216.
42. Chen, J.-L.; Nguan, H. S.; Hsu, P.-J.; Tsai, S.-T.; Liew, C. Y.; Kuo, J.-L.; Hu, W.-P.; Ni, C.-K., Collision-induced dissociation of sodiated glucose and identification of anomeric configuration. Physical Chemistry Chemical Physics 2017, 19 (23), 15454-15462.
43. Tsai, S. T.; Chen, J. L.; Ni, C. K., Does low‐energy collision‐induced dissociation of lithiated and sodiated carbohydrates always occur at anomeric carbon of the reducing end? Rapid Communications in Mass Spectrometry 2017, 31 (21), 1835-1844.