簡易檢索 / 詳目顯示

研究生: 林昭伶
Lin, Chao-Ling
論文名稱: 花語之色彩意象應用於色彩建議與分析
Color Image of Flower Symbolism applied to Color Suggestion and Analysis
指導教授: 周遵儒
Chou, Tzren-Ru
口試委員: 王希俊
Wang, Hsi-Chun
戴孟宗
Tai, Meng-Tsung
周遵儒
Chou, Tzren-Ru
口試日期: 2022/01/06
學位類別: 碩士
Master
系所名稱: 圖文傳播學系碩士在職專班
Department of Graphic Arts and Communications_Continuing Education Master's Program of Graphic Arts and Communications
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 72
中文關鍵詞: 色彩學色彩心理學色彩意象色彩建議人工智慧深度學習
英文關鍵詞: Chromatology, Color Psychology, Color Image, Color Suggestions, Artificial Intelligence, Deep Learning
研究方法: 實驗設計法
DOI URL: http://doi.org/10.6345/NTNU202200309
論文種類: 學術論文
相關次數: 點閱:323下載:17
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究所側重分析的焦點以日本學者小林重順建立色彩意象座標(Color Image Scale)與色彩意象詞彙資料庫(Color Image Word Database),讓情緒與色彩或色彩組合標準化、數值化,以奠定學理討論基礎,其利用語意差異法度量色彩及意象的關聯,與日本色彩與設計研究所(Nippon Color and Design Research Institute, NCD)合作開發色彩意象座標。透過自然語言處理(Natural Language Processing, NLP)技術將一般口語化的表達轉換至專業的一個或多個設計參數的辨識,用於人工智慧(Artificial Intelligence, AI)深度學習(Deep Learning)訓練出符合大數據內容呈現趨勢優化的色彩建議的方法,提出具體建議。
    透過設計3組實驗「多意象色彩調和演算法」、「色彩意象抽取演算法」、「花卉圖片重點色彩擷取」,進行提取3色色彩組合當作已知色,實作於「色彩建議演算法」輸出建議色,利用網路問卷調查分析滿意度,結果顯示色彩建議後的5色色彩組合的滿意度平均數都比4色色彩組合高。本研究的主題花語之色彩意象應用於色彩建議後的4色、5色色彩組合的滿意度平均數均達3分以上具有正面的評價。另外,本研究觀察審美度方程式M=O/C,花卉圖片重點色彩應用於色彩建議後的4色、5色色彩組合,都有100%符合M>0.5,發現應是花的顏色色相大多較為相近,產生對應到的數值不會差太大的現象,在曼賽爾色彩系統中如果O與C的落差不夠大,計算得到的數據就不會差太大,進而發現當色彩色相都較為相近時只採用審美度來進行評量色彩調和度是不夠的。
    花語被加以利用於色彩意象的表現,輔助設計半自動化色彩建議方法,產生具有代表性或獨特性的色票,未來得以應用於印刷與設計產業中,解決一般非專業人員色彩運用能力不足的困境。COVID-19疫情觸動數位轉型契機,迫切需要大量的資訊傳遞、搜尋與雲端儲存及大數據的使用。科技的進步讓科技推動模式逐漸由技術轉為需求導向(陳聖智,2021),色彩建議方法的效能與創新應用的可行性,導入人工智慧概念,無須透過漫長歲月經驗累積養成,輔助更多有設計需求但能力不足的人,即時性設計因應少量多樣、個人化、個性化的趨勢設計潮流,亦是本研究主要課題以供後續相關研究與應用之參考。

    This study is focused on the Color Image Scale and the Color Image Word Database, which was established by the Japanese scholar Shigenobu Kobayashi as a standardized and quantitated platform of emotions and colors or combinations thereof for theoretical discussions. Mr. Kobayashi collaborated with the Nippon Color and Design Research Institute, utilizing the linguistic differentiation method to measure the relationship between a color and its color image and develop the Color Image Scale. This study uses natural language processing technology to transform colloquial expressions of flower symbolism into one or more identifiable professional design parameters and then trains the big data by artificial intelligence-based deep learning in order to provide practical suggestion and optimized tendency for color usage.
    In this study, through 3 groups of experiments: "multi-image color harmonization algorithm", "color image extraction algorithm" and "accent color capture of flower pictures", the 3-color combinations were extracted as known colors, and the aforesaid color suggestion algorithms were used to output suggested colors. After analyzing the satisfaction survey conducted by online questionnaires, the results showed that the arithmetic mean of satisfaction survey of the 5-color combinations, which use the suggested colors, was higher than that of the 4-color combinations. The arithmetic mean of satisfaction survey of the 4-color and 5-color combinations, all of which use suggested colors generated by color image of the flower symbolism at issue, was more than 3 points and thus possessed a positive evaluation. This study further reviewed the aesthetic measure equation: M = O / C and found that 100% of the 4-color and 5-color combinations, all of which use suggested colors generated by the accent colors of flower pictures, were resulted in M > 0.5. It was likely because the color hues of flowers were substantially similar, and therefore the corresponding ratios did not differ too much. In the Munsell color system, if the differences between O and C are not large, the calculated ratios will not differ too much. Hence, it is concluded that merely using the aesthetic measure equation to evaluate color harmony is insufficient when the color hues are relatively similar.
    This study demonstrates that flower symbolism, if used in the expression of color image to develop a self-generating color suggestion method, can create representative or unique color tickets. It can be applied to the design industry in the future, solving the dilemma faced by laypersons who will not need to accumulate long-term experience. By introducing artificial intelligence into the printing and design industries, the color suggestion method, with its efficiency and applicability, can be a technological innovation and a new model of design service and a reference for subsequent researches and applications.

    致謝i 摘要ii Abstract iv 目錄vi 圖目錄viii 表目錄x 第壹章 緒論1 第一節 研究背景與動機1 第二節 研究目的與問題3 第三節 研究範圍與限制3 第四節 名詞釋義4 第五節 研究流程5 第貳章 文獻探討7 第一節 色彩學理論7 第二節 花語的語意分析16 第三節 大數據資料與深度學習24 第四節 文獻探討小結 27 第叁章 研究方法28 第一節 研究架構28 第二節 研究設備與工具29 第三節 設計色彩建議方法30 第四節 審美度46 第五節 問卷調查實驗51 第肆章 研究分析與討論58 第一節 網路問卷調查與分析58 第二節 綜合討論63 第伍章 結論與建議64 第一節 研究結論64 第二節 研究建議65 參考文獻67

    (中文文獻)
    王淼(2012)。中日花語的比較。科技致富向導期刊。第5期。
    王聖文(2009)。LBG-CD:一個在色彩量化基礎下的彩色影像壓縮技術。國立屏東科技大學,屏東縣,未出版之碩士論文。
    成同社(譯)(1989)。入門色彩心理學(原作者:瀧本孝雄、藤澤英昭)。北京市:科學技術文獻出版。
    朱光潛 (1946 )。文藝心理學。上海市,開明出版社。
    伊達千代(2008)。色彩的準則:玩出絕妙好設計。臺北市:悅知文化。
    李天任(1998)。色彩之系統化與色彩體系之研究。色彩與人生學術研討會。國立臺灣藝術教育館。
    李宗侃(2012)。色彩意象與色彩諧調性關係之研究。文化大學,臺北市,未出版之碩士論文。
    李銘龍。色彩原理。新北市:龍騰文化。
    吳淑芬(1995)。花的奇妙世界【四季花語錄160則】。臺北市:綠生活國際股份有限公司。
    林昆範(2005)。色彩原論。新北市:全華圖書。
    林昆範、柯凱仁(1999)。現代色彩學。臺北市:全華科技圖書。
    林書堯(1993)。色彩學。臺北市:三民書局。
    林逢祺(1998)。美感經驗與教育。教育研究集刊。第41卷,155~170。
    南開大學色彩與公共藝術研究中心(譯)(2006)。色彩形象座標(原作者:小林重順)。中國:人民美術出版社。
    施淑文(1994)。建築環境色彩設計。臺北市:淑馨。
    徐照夫(2015)。色彩原理。新北市:博客創意。
    張安撰(2019)。花之絮語-張安插畫創作論述。國立台中教育大學,臺中市,未出版之碩士論文。
    張春興(2000)。張氏心理學辭典。臺北市:東華書局出版。
    張碧珍(2009)。《中文情緒性隱喻之判斷與應用》。國立嘉義大學,嘉義市,未出版之碩士論文。
    郭永慶(1999)。以心理物理學角度探討色彩意象空間與 CIEL*a*b*色彩空間關係之研究。文化大學,臺北市,未出版之碩士論文。
    陳孝銘(1992)。企業識別設計與製作。臺南市:久洋。
    陳俊宏、楊東民(1999)。視覺傳達設計概論。臺北市:全華。
    陳建成(譯)(2018)。從基礎開始學習:花藝設計色彩搭配學(原作者:坂口美重子)。臺北市:噴泉文化館。
    陳聖智(2021)。後疫情時代的數位傳播─科技創新、智慧教育、與數位人文的觀點。人文與社會科學簡訊,22卷3期。
    黃書倩(譯)(2003)。色彩學的基礎(原作者:山中俊夫)。臺北市:六和出版社。
    經濟部(2020)。成立國家設計研究院規劃。取自https://www.ey.gov.tw/Page/448DE008087A1971/ae86b160-5aae-4f88-b5e2-23fa8931bdb9。
    楊萬里(譯)(1986)。色彩行銷戰略(原作者小林重順)。臺北市:資源發展出版有限公司。
    鄭國裕、林磐聳(2002)。色彩計劃(第2版)。臺北市:藝風堂。
    戴孟宗(2011)。現代色彩學。新北市 : 全華圖書。
    戴孟宗(2016)。現代色彩學-色彩理論、感知與應用。新北市:全華圖書。
    戴孟宗、廖信、楊宜瑄(2010)。色彩形容詞與感知強度指標之研究。中華印刷科技年報,230-246。
    謝翠如(2009)。中文色彩詞彙及語言色彩類別空間。國立交通大學,新竹市,未出版之博士論文。
    蘇文清、嚴貞、李傳房(2006)。聲音與色彩意象之共感覺研究-以中國氣鳴樂器吹孔類(笛與簫)為例。人文暨社會科學期刊。第2卷,第2期。

    (英文文獻)
    Berlin, B., & Kay, P. (1969). Basic color terms: Their universality and evolution. Berkeley, CA: University of California Press.
    Birren, F.(1963). Color. Secaucus. N.J.:Citadel Press, c1963.
    Birkhoff, G. D. (1933). Aesthetic measure. Cambridge, MA: Harvard University Press.
    Bowditch, H. P., and Warren, J. W.(1890). The knee-jerk and its physiological modifica-tions. Journal of Physiology, 11, 25-46.
    Chang, S., Lewis, D. E., & Pearson, J. (2013). The functional effects of color perception and color imagery. Journal of Vision, 13(10), 1-10.
    Cohen-Or, D., Sorkine, O., Gal, R., Leyvand, T., & Xu, Y.-Q. (2006). Color harmonization. ACM Transactions on Graphics, 25, No.3, Jul. 2006.
    Derefeldt, G., Swartling, T., Berggrund, U., & Bodrogi, P. (2004). Cognitive color. Color Research & Application, 29(1), 7-19.
    Filed, G. G. (1988). Color and its reproduction. Graphic Arts Technical Fndtn.
    Gerritsen, F.(1988). Evolution in color. Schiffer Publishing Ltd., Westchester, Pennsylvania, 1988, 88 pp.
    Hee, O. C. (2014). Validity and reliability of the customer-oriented behaviour scale in the health tourism hospitals in Malaysia. International Journal of Caring Sciences, 7(3), 771-775.
    Hope, A., & Walch, M.(1990). The Color of Compendium. Van Nostrand Reinhold, New York, 360 pp.
    Horiguchi, S., & Iwamatsu, K. (2018). From munsell color system to a new color psychology system. Color Research & Application 43(6). 827-839.
    Hsiao, S.-W., Yang, M.-H., & Lee, C.-H. (2016). An aesthetic measurement method for matching colors in product design. Color Research & Application, 42, 664–683.
    Humphreys, G. W., & Bruce, V. (1989). Visual cognition: Computational, experimental, and neuropsychological perspectives. Hove & London, United Kingdom: Lawrence Erlbaum Associates, 352 pp.
    Kelly, K. L. & Judd D. B.(1955). The ISCC-NBS method of designating colors and a dictionary of color names. National Bureau of Standards (USA), 553.
    Kim, H.-R. Yoo, M.-J. & Lee, I.-K. (2013). Multi color selection using color database. 2013 International Symposium on Ubiquitous Virtual Reality, 26-29.
    Kita, N., & Miyata, K. (2016). Aesthetic rating and color suggestion for color palettes. Computer Graphics Forum, 35(7), 127-136.
    Kobayashi, S. (1981). The aim and method of the color image scale. Color Research & Application 6(2), 93-100.
    Kobayashi, S. (1991). Color image scale. Tokyo : Kodansha, Ltd.
    Lester, O. P.(1932). Mental set in relation to retroactive inhibition. Journal of Experimental Physiology,13, 681-699.
    Miinsterberg, H. (1892). Gedachtnisstudien. Beitrage zur Experimentellen Psychologie, 1892, 4, 70.
    Mikolov, T., Chen, K., Corrado, G. & Dean, J. (2013). Efficient estimation of word representations in vector space. CoRR, abs/1301.3781.
    Mirnczuk, M. M., & Protasiewicz, J. (2018). A recent overview of the state-of-the-art elements of text classification. Expert Systems with Applications, 106, 36–54.
    Moon, P., & Spencer, D. E. (1944). Aesthetic measure applied to color harmony. Journal of the Optical Society of America, 34(4), 234-242.
    Munsell, A. H. (1912). A pigment color system and notation. The American Journal of Psychology (University of Illinois Press) 23(2), 236–244.
    Museros, L., Sanz, I., & Falomir, Z. et al. (2020). Creating, interpreting and rating harmonic color palettes using a cognitively inspired model. Cognitive Computation, 12, 442–459.
    Musto, C., Semeraro, G., de Gemmis, M., & Lops, P. (2016). Learning word embeddings from Wikipedia for Content-Based recommender systems. In: Ferro N. et al. (eds) Advances in Information Retrieval. ECIR 2016. Lecture Notes in Computer Science, 9626. Springer, Cham.
    O'Donovan, P., Agarwala, A., & Hertzmann, A. (2011). Color compatibility from large datasets. ACM Transactions on Graphics, 30, 43.
    Ou, L. -C. (2016). A comparison between colour preference and colour harmony–taking athletic shoe design as an example. 2016 Design Research Society, 50 Anniversary Conference. Retrieved from https://doi.org/10.21606/drs.2016.89.
    Ou, L. -C., Yuan, Y., Sato, T., Lee, W.-Y., Szabó, F., Sueeprasan, S., & Huertas, R. (2018). Universal models of color emotion and color harmony. Color Research & Application, 43, 736–748.
    Peng, L. Kuang1, Z. Peng2, X., & Li, R. (2015). Discovering harmony: A hierarchical color harmony model for aesthetics assessment. 2014 Asian Conference on Computer Vision, 452-467.
    Simpson, J., & Wwiner, E (Eds.)(1989). The Oxford English dictionary (2nd ed.). Oxford, England: Oxford University Press.
    Stroop, J. R. (1935). Studies of interference in serial verbal reactions. Journal of experimental psychology, 18(6), 643.
    Tonnquist, G.(1986). Philosophy of perceived color order systems. Color Research & Application. 11(1), 51–55.
    Yang, B., Wei, T., Fang, X., Deng, Z., Li, F. W. B., Ling, Y., & Wang, X. (2019). A color-pair based approach for accurate color harmony estimation. Computer Graphics Forum, 38(7), 481-490.
    Zhang, H., Yang, X., Tan, J., Wu, C.-H., Wang, J., & Kuo,C.-C. Jay (2020). Learning color compatibility in fashion outfits. Computer Vision and Pattern Recognition, arXiv:2007.02388.

    下載圖示
    QR CODE