研究生: |
葉仲禹 Yeh, Chung- Yu |
---|---|
論文名稱: |
生物微培養器研製及其應用於數位全像顯微活細胞觀測 Development of micro-incubator for living cell observation with digital holographic microscopy |
指導教授: |
鄭超仁
Cheng, Chau-Jern |
口試委員: |
杜翰艷
TU, HAN-YEN 賴韻如 Lai, Yun-Ju 鄭超仁 Cheng, Chau-Jern |
口試日期: | 2022/01/13 |
學位類別: |
碩士 Master |
系所名稱: |
光電工程研究所 Graduate Institute of Electro-Optical Engineering |
論文出版年: | 2022 |
畢業學年度: | 110 |
語文別: | 中文 |
論文頁數: | 70 |
中文關鍵詞: | 數位全像術 、生物微培養器 、活細胞量測 |
英文關鍵詞: | Digital Holography, Micro-Incubator, Living Cells Measurement |
研究方法: | 實驗設計法 |
DOI URL: | http://doi.org/10.6345/NTNU202200304 |
論文種類: | 學術論文 |
相關次數: | 點閱:155 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究為研製生物微培養器系統維持生物細胞存活,並運用數位全像顯微鏡(Digital Holography Microscope, DHM)進行長時間(72 hrs.)活細胞量測,為了達到長時間連續觀測活細胞,本論文研製出可以放在顯微系統上的微型生物培養器系統。研製之微型培養器解決了現階段常會遇到實務應用上的問題,例如:溫控加熱不均、體型過大,沒有氣體系統導致能培養的細胞種類有所限制、成本過高等等,此研究運用微型控制器、低電壓電路設計與3D列印的技術,可依照量測系統做客製化設計,且改善製作成本、具有安全性,也能提供多種細胞生長、分裂之環境的生物微培養器,搭配數位全像顯微系統進行長時間的細胞觀測與造影,本研究實驗結果可驗證此系統具實務可行性,並可應用於觀測細胞分裂等結果。
This study is to develop a biological micro-incubator system to maintain the survival of biological cells and to use Digital Holography Microscope (DHM) for long-term measurement of living cells. The common type of incubator used for human cell culture is carbon dioxide incubator. In order to continuously observe cells, this paper has developed a biological micro-incubator system that can be placed on DHM system. The developed micro-incubator solves the problems often encountered at this stage, such as uneven temperature control and heating, excessive body size, without gas system will limit the types of cells that can be cultured, high cost, etc. Using a micro-controller with low-voltage circuit design and the 3D printing technology has designed a biological micro-incubator that can be customized according to the measurement system and reduce the production cost. Also, it is safe and can provide an environment for a variety of cells to divide, and assist in the use of a digital holographic microscopy system perform long-term cell observations.
[1] S. C. Taylor, B. Hurst, C. L. Charlton, A. Bailey, J. N. Kanji, M. K. McCarthy, T. E. Morrison, L. Huey, K. Annen, M. G. DomBourian, and V. Knight, “A New SARS-CoV-2 Dual-Purpose Serology Test Highly Accurate Infection Tracing and Neutralizing Antibody Response Detection.” J. Clin. Microbiol., 56(4), e02438-20 (2021).
[2] K, Mahmoud, A. T. Abdulla, P. B. Kwon, K. H. Joo, A. N. Mohammed, “A pilot study of the antiviral activity of anionic and cationic polyamidoamine dendrimers against the Middle East respiratory syndrome coronavirus” J. Med. Virol. 92(9), 1665-1670 (2020).
[3] Incubator: Introduction, Principle, Types, Uses and Keynotes, URL https://universe84a.com/incubator/
[4] Sifo, Products URL https://www.sifo.com.tw/products_detail/54
[5] S. R. Heidemann, P. Lamoureux, K. Ngo, M. Reynolds, and R. E. Buxbaum, “Open-dish incubator for live cell imaging with an inverted microscope” BioTechniques, 35, 708-716 (2003)
[6] J.Y. Cheng, C.J. Hsieh, Y.C. Chuang, and J.R. Hsieh “Performing microchannel temperature cycling reactions using reciprocating reagent shuttling along a radial temperature gradient” Analyst, 130(6), 931-940 (2005)
[7] C. H. Ou Yang, “Development of Microfluidic Cell Culture Chip” I-Shou University, Submitted to Department of Mechanical and Automation Engineering (2010)
[8] J. Zhang, A. C. E. Chia, and R. R. LaPierre, “Low resistance indium tin oxide contact to n-GaAs nanowires”, Semicond Sci Technol, 29(5), 054002 (2004)
[9] M. N. XIE, “The effect of heat treatment on the characteristics of ITO thin films”, National Taiwan Normal University, Department of Mechatronic Engineering (2012)
[10] B. J. Chen, “A study on temperature control of biochips for live cell culture” St. John’s University, Electronic Engineering (2011)
[11] ATCC, CCL-228 Product Sheet - SW480, URL ttps://www.atcc.org/products/ccl-228
[12] ATCC, CRL-2266 Product Sheet - SH-SY5Y, URL https://www.atcc.org/products/ crl-2266
[13] S. Petronis, M. Stangegaard, C. B. Christensen, and M. Dufva, “Transparent polymeric cell culture chip with integrated temperature control and uniform media perfusion” BioTechniques, 40(3), 368-376 (2006)
[14] C. Picard, V. Hearnden, M. Massignani, S. Achouri, G. Battaglia, S. MacNeil, and A. Donald, “A micro-incubator for cell and tissue imaging” BioTechniques, 48(2), 135-138 (2010)
[15] Z. Liu, L. Tian, S. Liu, and L. Waller, “Real-time brightfield, darkfield, and phase contrast imaging in a light-emitting diode array microscope” J Biomed Opt, 19(10), 1-5 (2014)
[16] R. Akashi, A. Hirayama, and D. Koyama, “Quantitative evaluation of the mortality rate of HeLa cells induced by microbubble vibration and collapse under pulsed ultrasound irradiation” Med Phys, 12,100041 (2021)
[17] S. I. A. Wahab, A. B. Abdul, A. S. Alzubairi, M. M. Elhassan, and S. Mohan, “In Vitro Ultramorphological Assessment of Apoptosis Induced by Zerumbone on HeLa” J. biotechnol. biomed., 769568 (2009)
[18] D. Gabor, “A New Microscopy Principle, “Nature 161, 777-778 (1948).
[19] Eltronis, Holograms-What are they and how are they made?, URL https://www.eltronis.com/events/holograms-what-are-they-and-how-are-they-made/
[20] D. Leseberg and C. Frère, “Computer-generated holograms of 3-D objects composed of tilted planar segments,” Appl. Opt. 27, 3020-3024 (1988).
[21] J. W. Goodman and R. W. Lawrence, “Digital image formation from electronically detected holograms,” Appl. Phys. Lett. 11, 77 (1967).
[22] Y. C. Lin, H. C. Chen, H. Y. Tu, C. Y. Liu, and C. J. Cheng, “Optically driven full-angle sample rotation for tomographic imaging in digital holographic microscopy,” Opt. Lett. 42, 1321-1324 (2017).
[23] T. Zhang and I. Yamaguchi, “Phase-shifting digital holography,” Opt. Lett. 22, 1268-1270 (1997).
[24] E. N. Leith and J. Upatnieks,” Reconstructed Wavefronts and Communication Theory*,” J. Opt. Soc. Am. 52, 1123-1130 (1962).
[25] G. Nehmetallah and P. P. Banerjee, “Applications of digital and analog holography in three-dimensional imaging,” Adv. Opt. Photon. 4, 472-553 (2012).
[26] H. Guo, and M. Chen, “Multiview connection technique for 360-deg three-dimensional measurement” Opt. Eng., 42(4), 900-905 (2003)
[27] E. Cuche and P. Marquet and C. Depeursinge, “Simultaneous amplitude-contrast and quantitative phase-contrast microscopy by numerical reconstruction of Fresnel off-axis holograms” Appl. Opt., 38(34), 6994-7001 (1999)
[28] Y. Deng, C. H. Huang, B. Vinoth, D. Chu, X.J. Lai, and C. J. Cheng, “A compact synthetic aperture digital holographic microscope with mechanical movement-free beam scanning and optimized active aberration compensation for isotropic resolution enhancement” Opt. Lasers Eng. 134, 106251 (2020)
[29] X. J. Lai, H. Y. Tu, Y. C. Lin, and C. J. Cheng, “Coded aperture structured illumination digital holographic microscopy for superresolution imaging” Opt. Lett., 43(5), 1143-1146 (2018)
[30] Y. C. Lin, H. Y. Tu, X. R. Wu, X. J. Lai, and C. J. Cheng, “One-shot synthetic aperture digital holographic microscopy with non-coplanar angular-multiplexing and coherence gating” Opt. Lett., 26(10), 12620-12631 (2018)
[31] X. J. Lai, H. Y. Tu, C. H. Wu, Y. C. Lin, and C. J. Cheng, “Resolution enhancement of spectrum normalization in synthetic aperture digital holographic microscopy” Appl. Opt., 54(1), A51-A58 (2015)
[32] H. Y. Tu, W. J. Hsiao, X. J. Lai, Y. C. Lin, and C. J. Cheng, “Synthetic aperture common-path digital holographic microscopy with spiral phase filter” J. Opt., 19(6), 065604 (2017)
[33] Y. C. Lin, and C. J. Cheng, and L. C. Lin, “Tunable time-resolved tick-tock pulsed digital holographic microscopy for ultrafast events” Opt. Lett., 42(11), 2082-2085 (2017)