簡易檢索 / 詳目顯示

研究生: 彭天音
Tian-Yin Peng
論文名稱: 探討氣象探究網路競賽中學生科學探究能力的表現
Inquiry Based Learning in Taipei Weather Science Learning Network
指導教授: 許瑛玿
Hsu, Ying-Shao
學位類別: 碩士
Master
系所名稱: 地球科學系
Department of Earth Sciences
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 217
中文關鍵詞: 科學探究線上科展話語分析
英文關鍵詞: Science inquiry, Web-enhanced Project-Based Learning, discourse analysis
論文種類: 學術論文
相關次數: 點閱:207下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究探討氣象探究網路競賽中學生科學探究能力表現的情形,先分析2006-2008年學生科學探究能力表現情形,再探討2009年修改學習單之後,學生科學探究能力的改變情形,以及學生對科學探究的信心和學習態度對探究能力表現的影響、教師對科學探究教學的看法對學習科學探究能力表現的影響。並透過焦點組的錄影觀察和晤談,分析個案教師在氣象探究網路競賽的指導策略。本研究採相關研究法,對象為台北市四到九年級學生,2006-2009年有效組數分別為23、40、55、51組。研究工具為對科學探究的信心量表、對自然科學的態度量表、教師對科學探究看法問卷、學生科學探究能力晤談單、教師科展指導晤談單。主要的研究結果如下:(一)從「形成問題假說」、「設計研究」、「收集呈現數據」及「分析闡述結果」四個向度進行獨立樣本單因子變異數分析,顯示「收集呈現數據」(F=3.79, p<.01)與「分析闡述結果」(F=13.30 , p<.01)兩個向度在2006-2009四年中達顯著差異,且2009年修改學習單後都有較好的表現。(二)學生在活動前後,對科學探究的信心量表總分達顯著差異(t=3.62, p<.01),顯示在經過本次活動後學生對科學探究學習更有信心。而對科學探究信心量表前後測與該量表四向度的交互作用達顯著水準(F=4.15, p<.01),顯示活動後學生對「收集呈現數據」上的表現更具信心。(三)學生在活動後,對自然科學的態度量表總分顯著高於活動前。而對自然科學態度與科學探究能力表現的相關分析,顯示學生對自然科學態度與探究表現呈線性關係,且對自然科學態度高的學生,其科學探究能力表現也較好。(四)教師對科學探究教學看法進行三因子獨立樣本變異數分析,顯示年齡分布在46-50歲與26-30歲且有使用過探究教學進行教學的教練,其對科學探究教學較有正向看法。(五)「形成問題與假說」共由四個事件所組成,個案教師引導學生在「形成問題」形成一個可以研究的問題;並在「問題的可測試性」將問題聚焦成一個可以進行科學調查的問題;在「釐清變因」引導學生釐清研究問題變項間的邏輯關係,並在「問題的可推論性」藉由推論來開拓問題的發展空間。「設計研究」共由三個事件所組成,在「設計可調查的研究」事件,個案教師引導學生設計科學調查,並引導學生對變因定出操作型定義以及適用的條件;並在「計畫的準確性」檢視所收集資料的適用性,作為調整科學調查方法和流程的依據,並反覆測試;在「變因的操弄」考慮較多的變項,將與研究問題相關較高的變項設計於研究調查中。「收集呈現數據」共由三個事件所組成,在「避免誤差」事件提醒學生蒐集資料過程應避免誤差和偏見;並在「數據的呈現與轉換」事件,引導學生選取較清楚且具意義的方式,呈現和轉換數據;在「數據的邏輯性」事件,教師引導學生以合乎邏輯的方式收集和分析資料。「分析闡述結果」共由三個事件所組成,在「解釋資料」事件,個案教師引導學生依據數據或資料的特徵、規律或趨勢作科學解釋;並在「資料的客觀性」事件,提出可支持論點的有力證據,及說明成為證據的依據;最後,教師在「下結論」事件引導學生綜合證據和適用範圍,對研究問題提出結論。

    This study aims to understand student’s inquiry performances with the aid of the TWIN system. At first, we analyzed student’s inquiry performances from 2006 to 2008. The findings and implications were generalized to modify four worksheets in 2009. With their performances on the modified worksheets, we investigated how students’ scientific inquiry performances were influenced by their confidence and learning attitudes toward inquiry as well as teachers’ attitudes toward scientific inquiry instruction. Furthermore, we also analyzed a case teacher’s instructional strategies when she guided the target group to participate TWIN using observation and interview techniques. The participants were grades fourth to nine in Taipei city, and we recruited 23, 40, 55, and 51 groups between 2006 to 2009 , respectively, into our study. The research instruments included worksheets and questionnaire for teachers and students. Students needed to fill in questionnaires about their confidence in scientific inquiry and attitudes toward scientific inquiry. As for teachers’ part, they filled up the opinion survey on science inquiry instruction and about instructing science fairs. The main results of study included : (1) only the “collecting the data” (F=3.79, p<.01)and “interpreting the results” (F=13.30 , p<.01)showed significant differences from ANOVA within the four years from 2006 to 2009, but not “forming hypotheses” and “developing experimental designs” ; (2) students had higher confidence in scientific inquiry (t=3.62, p<.01) after finishing the competition. That is, the course helped students to process data with higher confidence(F=4.15, p<.01); (3) students’ attitudes in scientific inquiry made significant progress. Students’ attitudes were positively correlated with their inquiry performances– the higher scores on attitudes toward science they got, the better scientific inquiry performances they would have; and (4) teachers’ opinion survey on science inquiry showed that those who aged between 46 to50 and between 26 to30 as well as who implemented scientific inquiry had more supportive attitudes toward scientific inquiry instruction. Last, the case teacher’s instructional patterns emerged after our qualitative analysis of observation and interview data. First, she guided the forget group in “hypothesis formulation “as a series of four steps: the formation of questions, the feasibility of research questions, the clarification of possible variables, and future developments of questions. The critical element in “hypothesis formulation” was students’ ability to develop questions from hypothesis through scientific investigations. Second, “developing experimental designs” comprises three events: the design of experiments, the accuracy of planning, and the manipulation of variables. At this stage, the case teacher guided the target group to design a scientific investigation to answer a question or test a hypothesis. Third, “collecting the data” was also consisted of three elements: avoiding errors, presenting meaningful data, and collecting data in logic. That is, the case teacher guided the target group to organize and employ sufficient data to support their hypothesis. Last, the stage of “interpreting the results” was derived from three events, including the interpretation of data, ensuring the objectivity, and making a conclusion. The case teacher guided the target group to offer reasonable interpretations of the results and the reasonable scope of applying the conclusion.

    第一章 緒論 1 第一節 研究動機與背景 1 第二節 研究目的 5 第三節 研究問題 6 第四節 研究的重要性 7 第五節 名詞釋義 8 第二章 文獻探討 10 第一節 科學探究 10 第二節 科學探究教學的話語分析 27 第三節 線上(網路)科展 36 第三章 研究方法 43 第一節 研究對象與情境 44 第二節 研究設計與流程 53 第三節 研究工具 57 第四節 資料分析 74 第五節 研究範圍與限制 96 第四章 研究結果與討論 97 第一節 學生科學探究能力的表現 97 第二節 學生信心、態度與科學探究能力間的相關性 113 第三節 教師對科學探究的看法 131 第四節 科學探究教學與學習之個案研究 139 第五章 結論與建議 171 第一節 研究發現與結論 171 第二節 檢討與建議 175 第三節 未來研究發展與方向 178 參考文獻 181 中文 181 英文 184 附錄 189

    中文文獻:
    王美芬、熊召弟(民94)。國小自然與生活科技教材教法。台北市:心理出版社。
    鍾聖校(民88)。自然與科技課程教材教法。台北市:五南出版社。
    王保進(2006)。英文視窗版SPSS與行為科學研究。台北市:心理。
    王緒溢、吳權威(1997)。Netscape 4.0實務。台北:松崗。
    洪振方(民92)。探究式教學的歷史回顧與創造性探究模式之初探。民98年9月27日,取自http://www.phy.ntnu.edu.tw/nstsc/pdf/book6/12.pdf
    張清濱(民89)。探究教學法。師友,395,45-49。
    教育部(民83)。國民中學課程標準。台北:教育部。
    教育部(民87)。國民教育階段九年一貫課程總綱綱要。台北:教育部。
    教育部(民90a)。國民中小學九年一貫課程暫行綱要。台北:教育部。
    教育部(民90b)。國民中小學九年一貫課程暫行綱要-自然與生活科技學習領域。台北:教育部。
    教育部(民90c)。教學創新九年一貫課程問題與解答。台北:教育部。
    教育部(2003)。科學教育白皮書。台北:教育部。
    教育部(2008)。中小學資訊教育白皮書。台北:教育部。
    胡幼慧、姚美華(民85),一些質性方法上的思考,載於胡幼慧主編,質性研究。台北:巨流,153。
    許瑛玿、廖桂菁(2003)。情境式網路學習環境互動行為分析:以高中地球科學線上學習為例。師大學報:科學教育類,48(1),93-118。
    詹秀玉、郭靜姿 ( 2007 ):科展表現優良師生之互動歷程分析。資優教育研究,7(2), 47 -68。
    張立杰、王緒溢、林燕玲、陳錦雪、徐蕙君(2009)。無線氣象感測平台上之學生探究學習成果分析。GCCCE2009全球華人科技研討大會論文集。
    謝莉文(2006)。鷹架式科學探究課程研發與實踐的個案研究。國立臺灣師範大學地球科學系碩士論文,未出版,台北市。
    王如玉(1999)。問題解決教學模組對高一學生學習之影響。國立臺灣師範大學地球科學研究所碩士論文,未出版,台北市。
    郭幸宜(2004)。應用探究鷹架之自我評量策略對大學普通生物實驗課程學生科學探究能力之影響。國立中山大學生物科學系碩士論文,未出版,高雄市。
    陳博文(2007)。進行科學探究教學以促進五年級學生學習成效之探討。國立屏東教育大學數理教育系碩士論文,未出版,屏東市。
    鄭秀玲(2004)。中小企業對我國研發競爭力的貢獻和限制:台灣與七大工業國家(G7)的專利品質比較。行政院國家科學委員會。
    魏明通( 2002 ):科學教育。臺北:五南。
    徐國士( 2001 ):中華民國中小學科學展覽會實施要點。臺北:國立臺灣科學教育館。
    何建明、葉信源(1999)。資訊科技與教育互動—建立「以網路為主的教育情境」。論文發表於第一屆「資訊科技與社會轉型研討會」,中央研究院社會學研究所。
    徐新逸(民90)。如何利用網路幫助孩子成為研究高手?網路專題式學習與
    教學創新。台灣教育,607 期,頁25-34。
    江火明、陳斐卿、王宏仁與林惠倫(2001,12)。網路上探究式學習活動流失學員之特徵分析。論文發表於中華民國電腦學會「全國計算機會議」,中國文化大學,台北。
    許銘津、黃義峰(2004)。Web-based專題式學習之教學與評量-理論與實務。2004 自然與生活科技學習領域課程研討會。Nov. 20, 2004,台北,台灣。
    岳修平、鐘婉莉(2005)。專題式學習小組網路溝通互動之研究。教育學刊,25,1-23。
    陳斐卿、江火明、李郁薇(2007)。中學生的網路合作探究學習之挑─以網路學習歷程檔案科展為例。2007科技與學習國際學術研討會。July 26, 2007,屏東,台灣。
    邱彥文(2001)。國中理化課試行POE教學之個案研究。國立彰化師範大學科學教育研究所碩士論文,未出版,彰化市。
    徐毓慧(2001)。利用前置組織因子增進恆定概念學習之研究。國立台灣師範大學生命科學研究所碩士論文,未出版,台北市。
    韓順興(2004)。創造性探究教學對國中生理化科學習動機、創造力與學習成就之影響。國立高學師範大學科學教育研究所碩士論文,未出版,高雄市。
    陳榮祥(2006)。V圖式科學探究指導模式之開發及應用。國立高學師範大學科學教育研究所碩士論文,未出版,高雄市。
    黃毓琪(2007)。IT及STS探究式教學對國小學童科學解釋能力之影響。國立屏東教育大學數理教育研究所碩士論文,未出版,屏東市。
    蔡執仲、段曉林、靳知勤(2007)。巢狀探究教學模式對國二學生理化學習動機影響之探討。科學教育學刊,15(2),119-144。
    蘇育男、徐順益(2009)。融入多面向架構之5E教學模式對八年級學生熱學概念改變與學習動機之研究。數理學科教學知能,1冊, 2009/07,45-63。
    亞卓市網路科展
    http://lain.atm.ncu.edu.tw/
    台北市校園數位氣象網
    http://203.73.116.173/WeatherEpaper/epaper/EpaperList.aspx
    氣象探究網路競賽
    http://weather.tp.edu.tw/contest

    英文文獻:
    American Association for the Advancement of Science. (1965). Science –A process approach. Washington, D.C.: Author.
    American Association for the Advancement of Science. (1989). Project 2061: Science for all Americans. Washington, D.C.: AAAS, Press.
    Abd-El-Khalick, F., BouJaoude, S., Hofstein, A., Lederman, N. G., Mamlock, R., Niaz, M., Treagust,D., & Tuan, H. (2004, March). Inquiry in science education: International perspectives, St. Louis, MI.
    Barak, M. & Dori, Y. J. (2005). Enhancing undergraduate students' chemistry understanding through project-based learning in an IT environment. Science Education,89(1), 117-139.
    Bell, P., Davis, E. A., & Linn,M. C. (1995). The Knowledge Integration Environment: Theory and design. In J. L. Schnase & E. L. Cunnius (Eds.), Proceedings of the Computer Supported Collaborative Learning Conference ’95. Mahwah, NJ: Lawrence Erlbaum Associates, Inc.
    Bibens, R.F(2001). Using inquiry effectively. Theory into practice.19(2).87-92.
    Brunettti, A. J., Petrell, R. J., Sawada, B. (2003). Team project-based learning enhances awareness of sustainability at the University of British Columbia, Canada. International Journal of Sustainability in Higher Education, 4(1), 210-217.
    Cazden, C. (1986). Classroom discourse. In M. E. Wittrock (Ed.), Handbook of Research on Teaching (3rd ed., pp. 432-463). New York: Macmillan.
    Chen, S.H. & Wu, H.T.(2006 August)Reflections of instructing Science Fair in the community of disadvantageous Culture. paper presented at 19th International Conference on Chemical Education, Seoul, Korea.
    Collins,H.M.(1985).Changing order: Replication and induction in scientific practice. London: Sage.
    Collins, H.M., and T.J. Pinch. 1998b. The Golem: What You Should Know About Science (2nd edition). Cambridge: Cambridge University Press.
    Dembrow, M P. & Molldrem-Shamel, J.(1997).Thinking about teaching through inquiry, Reading Teacher,51(2),162-164.
    Dixon-Krauss L.(1996). Vygotsky in the classroom: Mediated literacy instruction and assessment. White Plains, N.Y.: Longman Pub.
    Dodge, B. (1995). WebQuests: A Technique for Internet-Based Learning. Distance Educator, 1(2),10-13.
    Duschl, R. A., & Grandy, R. E. (2005). Reconsidering the Character and Role of Inquiry in School Science: Framing the Debates. Plenary paper for Inquiry Conference on Developing a Consensus Research Agenda, New Brunswick, NJ.
    Dunkhase, J. A. (2003). The coupled-inquiry cycle: a teacher concerns-based model for effective student inquiry. Science Educator, 12(1), 10-15.
    Dunlap, J. C. (2005). Problem-based learning and self-efficacy :How a capstone course prepares students for a profession. Educational Technology Research and Development, 53(1), 65-85.
    Ertmer, P. A. (1999). Addressing First- and Second-Order Barriers to Change: Strategies for Technology Integration. ETR&D, 47(4), 47-61.
    Flanders,N.A.(1970).Analyzing teacher behavior.Reading, MA:Addison-Wesley Publishing Company.
    Gibson, H. L., & Chase, C. (2002). Longitudinal impact of an inquiry-based science program on middle school students’ attitudes toward science. Science Education, 86, 693-705.
    Goldsworthy, R. (1999). Collaborative classrooms. Learning & leading with Technology, 27(4). from http://www.iste.org/L&L/archive/vol27/no4/features/goldsworthy
    Heckendorn, R. B. (2002). Building a Beowulf: Leveraging research and department needs for student enrichment via project based learning. Computer Science, 35(3),72-83.
    Herman, J. L., Aschbacher, P. R., & Winters, L. (1992). A practical guide to alternative assessment. Virginia: Association for Supervision and Curriculum Development.
    Herron, M. D. (1971). The nature of science enquiry. School Review, 79(2), 171-212.
    Jonassen, D.,Peck,K.,& Wilson,B.(1999).Learning with technolngy-A constructivist perspective. Upper Saddle River, NJ:Prentice Hall, Inc.
    Kelly, G., Crawford, T., & Green, J. (2001). Common task and uncommon knowledge: Dessenting voices in the discursive construction of physics acress small laboratory groups. Linguistics and Education, 12(2), 135-174.
    Keys, C. W.,& Bryan, L. A. (2001). Co-constructing inquiry-based science with teachers: Essential research for lasting reform. Journal of Research in Science Teaching, 38(6), 631-645.

    Krajcik, J. S., Blumenfeld, B., Marx, R., & Soloway, E. (2000), Instructional, curricular, and technological supports for inquiry in science classrooms., In J. Mirstell, E. Van Zee (Eds.), Inquiry into Inquiry: Science learning and teaching., 283-315, Washington, DC: American Association for the Advancement of Science Press..
    Kyza, E. A., & Constantinou, C. P. (2007). Stochasmos: A web-based platform for reflective, inquiry-based teaching and learning. Cyprus: Learning in Science Group.
    Laffey, J., Tupper, T., Musser, D. & Wedman, J. (1998). A computer-mediated support system for project-based learning. Eductional Technology Research and Development, 46(1), 73-86.
    Linn,M. C., & Slotta, J. D. (2000).WISE Science. Educational Leadership,58(2), 29–32.
    Linn, M. C. (2003). Technology and science education: starting points, research programs, and trends. International Journal of Science Education, 25(6), 727-758.
    Sandoval, W. A., & Millwood, K. A. (2003). High school students' ideas about theories and theory change after a biological inquiry unit. Journal of Research in Science Teaching, 40(4), 369-392.
    Schwab, J.(1962). The teaching of science as enquiry. In J. Schwab & P. Brandwein (Eds.), The teaching of science. Cambridge: Harvard University Press.
    Schwarz, C., & Gwekwerere, Y. (2007). Using a guided inquiry and modeling instructional framework (EIMA) to support preservice K-8 science teaching. Science Education, 91, 158–186.
    Shashaani, L. (1997). Gender differences in computer attitudes and use among college students. Journal of Educational Computing Research, 16(1), 37-51.
    Simkins, Michael(1999)Project-based learning with multimedia. Thrust for Educational Leadership , Mar/Apr99, Vol. 28 Issue 4, p10, 4p, 1 chart, 1bw.
    Simon, S., Erduran, S., & Osborne, J. (2006). Learning to teach argumentation: Research and development in science classroom. International Journal of Science Education, 28, 235-260.
    Solomon, G. (2003). Project-based learning: A primer. Technology & Learning, 23(6), 20-30.
    Songer, N. B., & Ho, P. S. (2005). Guiding the "explain": A modified learning cycle approach towards evidence on the development of scientific explanations. Paper presented at the Annual Meeting of the American Education Research Association, Montreal, Canada.
    Strauss, A & Corbin, J.(1990).Basics of Qualitative Research:Grounded Theory Procedures and Techniques.Newbury Park,CA:Sage.
    Syer, C. A. & Shore, B. M. (2001). Science fair :What are the source of help for students and how prevalent is cheating School Science and Mathenatics,Vol.101(4), pp.206-220.
    Tamir, P. (1991). Practical work in school science: An analysis of current practice. In B. E. Woolnough (ed.), Practical science (pp.89-100).Great Britain: Open University Press.
    Thomas, J.W. (2000). A review of research on project-based learning. San Rafael, CA: Autodesk.
    Thompson, S. L. (2003). Development of a framework to measure science teachers’ inquiry perceptions and practices. ERIC Document Reproduction Service No. ED 472970.
    Padilla, M. J. (1991). Science Activities, Process skills, and thinking. In S. M. Glynn, R. H. Yeany, & B. K. Britton, (Eds.), The psychology of learning science (pp.205-217). Hillsdale, New Jersey: Laurence Erlbaum Associates.
    Phillips,K.A ,& Germann,P.J.(2002).The inquiry“Ⅰ”: A tool for learning scientific inquiry. The American Biology Teacher,64(7),512-520.
    Polman, J., & Fishman, B. (1995). Electronic communication tools in the classroom: student and environmental characteristics as predictors of adoption. Paper presented at the Annual Meeting of the American Educational Research Association. San Francisco, CA.
    Quintana, C., Zhang, M., & Krajcik, J.(2005). A framework for supporting metacognitive aspects of online inquiry through software-based scaffolding. Educational Psychologist, 40(4), p235-244.
    Maor,D.(2002).CMLES Overview.Retrieved March 14,2005,from Murdoch University,Web site:
    http://wwwstaff.murdoch.edu.au/~dmaor/cmles.html
    Martin-Hansen, L. (2002). Defining inquiry:Exploring the many types of inquiry in the science classroom. The Science Teacher, 69(2), 34-37.
    McGrath, D. (2003). Rubrics, Portfolios, and Tests, Oh My! –Assessing understanding in Project-Based Learning. Learning & Leading with Technology.30(8). P. 42-45.
    Mehan, H. (1979). Learning lessons: Social organization in the classroom.Camgridge, MA: Harvard University Press.
    Moursund, D. (1999). Project-based learning using information technology. OR:International Society for Technology in Education Books and Courseware Department.
    National Science Teachers Association.(2009) Scientific Inquiry.Retrieved September 27,2009,from http://www.nsta.org/about/positions/inquiry.aspx
    National Research Council. (1996).National science education standards.Washington, DC: National Academy Press.
    Oregon Department of Education: 2002-2009 Official Scientific Inquiry Scoring Guide. http://www.davinci.pps.k12.or.us/.docs/pg/400/rid/12045/f/Science_Inquiry_Scoring_Guide.pdf
    Reiff, R., Harwood, W. S., & Phillipson, T. (2002, January). A scientific method based upon research scientists’ conceptions of scientific inquiry. Paper presented at the Association for the Education of teachers of Science,Greenville, NC.
    Rosenberg,J.M.(2001),E-learning: strategies for delivering knowledge in the digital age, McGraw-Hill.
    Vygotsky, L. s. (1978). Mind in society: The Development of Higher Psychological Process. Cambridge: Massachusetts.
    Wiggins, G. (1998). Educative assessment: Designing assessments to inform and improve student performance. San Francisco, CA: Jossey-Bass.
    World Economic Forum﹝WEF﹞(2009). Global Competitiveness Report2009-2010.Retrieved September 8,2009,from
    http://www.weforum.org/pdf/GCR09/GCR20092010fullreport.pdf

    下載圖示
    QR CODE