簡易檢索 / 詳目顯示

研究生: 李雅菁
Li, Ya-Jing
論文名稱: 太陽活動對西北太平洋冬半年颱風之影響
Impact of solar activity on the winter tropical cyclone in the western North Pacific
指導教授: 吳朝榮
Wu, Chau-Ron
學位類別: 碩士
Master
系所名稱: 地球科學系
Department of Earth Sciences
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 61
中文關鍵詞: 颱風太陽活動週期西北太平洋颱風主要發展區
DOI URL: http://doi.org/10.6345/THE.NTNU.DES.005.2018.B07
論文種類: 學術論文
相關次數: 點閱:162下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 颱風(typhoon)是生成於熱帶洋面上的熱帶氣旋(Tropical Cyclone, TC),對人類生命財產或是環境都構成嚴重威脅性,特別是在西北太平洋區域。過往研究颱風大多專注於5月至10月的夏半年,而11月到隔年4月的冬半年颱風較少有相關研究,然而即便在冬半年的環境不利於颱風生成與發展,但還是有機會發展成具破壞性的強烈颱風。因此,本研究探討冬半年期間生成於西北太平洋的颱風在過去30年間(1985年至2014年)的年際變化,並針對大氣動力和海洋熱力條件上的可能影響因素進行研究,其中包含海洋表面溫度(Sea Surface Temperature, SST)、暖水層的厚度、外逸長波輻射(Outgoing Longwave Radiation data, OLR)、相對渦度場、垂直風切(vertical wind shear)、太平洋副熱帶高壓(Pacific Sub-tropical High, PSH)強度及間熱帶輻合區(Intertropical Convergence Zone, ITCZ)位置,冀望能提供冬半年颱風預測之參考依據。本研究發現冬半年的強烈颱風個數與太陽活動週期有顯著的關係存在,其中太陽黑子活躍時期會產生成較多的強烈颱風,進一步發現海洋熱力條件並非主要影響因素,而是受到大氣環境的改變影響颱風的生成與發展,亦即太陽黑子活躍時期在大氣的動力條件上較有利於颱風發展為強烈颱風。

    摘要 I 目錄 II 圖目錄 V 表目錄 VIII 第一章、緒論 1 1.1 前言 1 1.1.1 颱風 1 1.1.2 研究區域 2 1.2 文獻回顧 3 1.2.1 海氣交互作用對颱風發展之影響 3 1.2.2 太陽黑子活動 7 1.3 研究動機 9 第二章、研究資料與方法 14 2.1 研究資料 14 2.1.1太陽黑子數資料 14 2.1.2 颱風資料 14 2.1.3 Argo floats溫度實測資料 15 2.1.4 WOA01資料 15 2.1.5 AVISO海洋表高度異常資料 16 2.1.6海表溫度資料 16 2.1.7重力位高度及風場資料 17 2.1.8外逸長波輻射資料 17 2.1.9雨量資料 18 2.2研究定義與方法 19 2.2.1颱風之定義 19 2.2.2太陽黑子活動時期之定義 19 2.2.3垂直風切之定義 20 2.2.4 850 hPa相對渦度變化之定義 20 2.2.5海洋溫度結構估算 22 第三章、結果與討論 32 3.1 結果分析 32 3.1.1 SC對SST的反應與強颱的關係 32 3.1.2 SC對D26的反應與強颱的關係 33 3.1.3 SC對850 hPa相對渦度場的反應與強颱的關係 33 3.1.4 SC對垂直風切的反應與強颱的關係 34 3.1.5 SC對OLR的反應與強颱的關係 35 3.1.6 SC對ITCZ的影響與強颱的關係 35 3.1.7 SC對太平洋副高的反應與強颱的關係 36 3.2 討論 37 3.2.1太陽活動週期與颱風生成點位置之關係 37 3.2.2太陽活動週期與颱風軌跡之關係 38 3.2.3強颱與太陽活動週期時間序列之特例年分析 38 第四章、結論 54 參考文獻 57

    Ahrens, C. (2009). Meteorology today. Belmont, CA: Brooks/Cole, CengageLearning.
    Baldini, L., Baldini, J., McElwaine, J., Frappier, A., Asmerom, Y., Liu, K., Prufer, K., Ridley, H., Polyak, V., Kennett, D., Macpherson, C., Aquino, V., Awe, J. and Breitenbach, S. (2016). Persistent northward North Atlantic tropical cyclone track migration over the past five centuries. Scientific Reports, 6(1).
    Briegel, L. and Frank, W. (1997). Large-Scale Influences on Tropical Cyclogenesis in the Western North Pacific. Monthly Weather Re-view, 125(7).
    Camargo, S. and Sobel, A. (2005). Western North Pacific Tropical Cyclone Intensity and ENSO. Journal of Climate, 18(15).
    Camargo, S., Robertson, A., Gaffney, S., Smyth, P. and Ghil, M. (2007a). Cluster Analysis of Typhoon Tracks. Part I: General Properties. Journal of Climate, 20(14).
    Camargo, S., Robertson, A., Gaffney, S., Smyth, P. and Ghil, M. (2007b). Cluster Analysis of Typhoon Tracks. Part II: Large-Scale Circulation and ENSO. Journal of Climate, 20(14).
    Chan, J. and Liu, K. (2004). Global Warming and Western North Pa-cific Typhoon Activity from an Observational Perspective. Jour-nal of Climate, 17(23).
    Chen, S., Knaff, J. and Marks, F. (2006). Effects of Vertical Wind Shear and Storm Motion on Tropical Cyclone Rainfall Asymme-tries Deduced from TRMM. Monthly Weather Review, 134(11).
    Cohen, T. and Sweetser, E. (1975). The ‘spectra’ of the solar cycle and of data for Atlantic tropical cyclones. Nature, 256(5515).

    Elsner, J. and Jagger, T. (2008). United States and Caribbean tropical cyclone activity related to the solar cycle. Geophysical Research Letters, 35(18).
    Gallina GM, Velden CS (2002) Environmental vertical wind shear and tropical cyclone intensity change utilizing enhanced satellite de-rived wind information. Preprints of the 25th Conf. on Hurricanes and Tropical Meteorology, San Diego, American Meteor Society.
    Goni, G., Kamholz, S., Garzoli, S., and Olson, D. (1996). Dynamics of the Brazil-Malvinas Confluence based on inverted echo sounders and altimetry. Journal of Geophysical Research Atmospheres, 101 (c7).
    Goni, G., DeMaria, M., Knaff, J., Sampson, C., Ginis, I., Bringas, F., Mavume, A., Lauer, C., Lin, I. I., Ali, M. M., Sandery, P., Ra-mos-Buarque, S., Kang, K., Mehra, A., Chassignet, E., Halliwell, G. (2009 ). Applications of satellite-derived ocean measurements to tropical cyclone intensity forecasting. Oceanography, 22(3).
    Gray, W. (1968). Global view of the origin of tropical disturbances and storms. Monthly Weather Review, 96(10).
    Gray, W.M. (1979) Hurricanes: Their Formation, Structure and Likely Role in the Tropical Circulation. In: Shaw, D.B., Ed., Meteorology over the Tropical Oceans, Royal Meteorological Society, James Glaisher House, Grenville Place, Bracknell, 155-218.
    Haigh, J. D. (2001), Climate variability and the influence of the sun,Science, 294.
    Hodges, R. and Elsner, J. (2010). Evidence linking solar variability with US hurricanes. International Journal of Climatology, 31(13).
    Hung, C. (2013). A 300-Year Typhoon Record in Taiwan and the Relationship with Solar Activity. Terrestrial, Atmospheric and Oceanic Sciences, 24(4-2).
    Lau, K., Wu, H. and Bony, S. (1997). The Role of Large-Scale At-mospheric Circulation in the Relationship between Tropical Convection and Sea Surface Temperature. Journal of Climate, 10(3).
    Lean, J. (2001). SUN-CLIMATE CONNECTIONS: Earth's Response to a Variable Sun. Science, 292(5515).
    Lean, J. (2005). Living with a Variable Sun. Physics Today, 58(6).
    Lianshou, C., Huibang, L., Yihong, D. and Hui, Y. (2004). An over-view of tropical cyclone and tropical meteorology research pro-gress. Advances in Atmospheric Sciences, 21(3).
    Lin, I. I., Wu, C. C., Pun, I. F., Ko, D. S. (2008). Upper-ocean thermal structure and the western North Pacific category 5 typhoons. Part I: Ocean features and the category 5 typhoons' intensification, Monthly Weather Review, 136.
    Lin, I. I., Pun, I. F., and Lien, C. (2014). “Category-6” supertyphoon Haiyan in global warming hiatus:Contribution from subsurface ocean warming. Geophysical Research Letters, 41(23).
    Lin, I. I., and Chan, J. C. L. (2015). Recent decrease in typhoon de-structive potential and global warming implications. Nature Communications, 6.
    Lindzen RS, Nigam S. (1987). On the role of sea surface temperature gradients in forcing low-level winds and convergence in the trop-ics. Journal of Atmospheric Sciences, 44.
    Mauquoy, D., van Geel, B., Blaauw, M. and van der Plicht, J. (2002). Evidence from northwest European bogs shows ‘Little Ice Age’ climatic changes driven by variations in solar activity. The Holo-cene, 12(1).
    Mori, N., Kato, M., Kim, S., Mase, H., Shibutani, Y., Takemi, T., Tsuboki, K. and Yasuda, T. (2014). Local amplification of storm surge by Super Typhoon Haiyan in Leyte Gulf. Geophysical Re-search Letters, 41(14).
    Palmen, E.(1948). On the formation and structure of tropical hurri-canes. Geophysica, 3(1).
    Rathmann, N., Yang, S. and Kaas, E.(2013). Tropical cyclones in en-hanced resolution CMIP5 experiments. Climate Dynamics, 42(3-4).
    Pun, I. F., Lin, I. I., Wu, C., Ko, D. and Liu, W. (2007). Validation and Application of Altimetry-Derived Upper Ocean Thermal Structure in the Western North Pacific Ocean for Typhoon-Intensity Fore-cast. IEEE Transactions on Geoscience and Remote Sensing, 45(6).
    Pun, I. F., Lin, I. I., and Lo. M-H. (2013). Recent Increase in High Tropical Cyclone Heat Potential Area in the Western North Pacific Ocean, Geophysical Research Letters, 40(17).
    Rind, D. (2002). The Sun's Role in Climate Variations. Science, 296(5568).
    Sabin, T., Babu, C. and Joseph, P. (2012). SST-convection relation over tropical oceans. International Journal of Climatology, 33(6).
    Shay, L. K., Goni, G. J., and Black, P. G. (2000). Effects of a warm oceanic feature on hurricane opal. Monthly Weather Review, 128 (5).
    Simpson, J., Ritchie, E., Holland, G., Halverson, J. and Stewart, S.(1997). Mesoscale Interactions in Tropical Cyclone Genesis. Monthly Weather Review, 125(10).
    Stowasser, M., Wang, Y. and Hamilton, K. (2007). Tropical Cyclone Changes in the Western North Pacific in a Global Warming Sce-nario. Journal of Climate, 20(11).
    Tu, J., Chou, C. and Chu, P. (2009). The Abrupt Shift of Typhoon Activity in the Vicinity of Taiwan and Its Association with Western North Pacific–East Asian Climate Change. Journal of Climate, 22(13).
    Vedavathi, C., Venkat Ratnam, M., Jagannadha Rao, V., Venkwa-teswara Rao, N. and VijayaBhaskara Rao, S. (2016). Investigation on the solar cycle signature on the Hadley circulation based on the intensity and duration of the solar cycle. International Journal of Current Research and Review, 8(4.016).
    Zharkova, V., Arzner, K., Benz, A., Browning, P., Dauphin, C., Em-slie, A., Fletcher, L., Kontar, E., Mann, G., Onofri, M., Petrosian, V., Turkmani, R., Vilmer, N. and Vlahos, L. (2011). Recent Ad-vances in Understanding Particle Acceleration Processes in Solar Flares. Space Science Reviews, 159(1-4).
    Zheng, Z., Hu, Z. and L’Heureux, M. (2016). Predictable Components of ENSO Evolution in Real-time Multi-Model Predictions. Scien-tific Reports, 6(1).

    下載圖示
    QR CODE