研究生: |
林宜霖 Bob Lin |
---|---|
論文名稱: |
以拉曼散射光譜研究 Sr2Y(Ru1-xCux)O6 與 Fe(Se,Te) 超導材料之晶格-電荷-自旋多重耦合效應 Lattice-charge-spin coupling in superconducting Sr2Y(Ru1-xCux)O6 and Fe(Se,Te) materials: A Raman-scattering study |
指導教授: |
劉祥麟
Liu, Hsiang-Lin |
學位類別: |
碩士 Master |
系所名稱: |
物理學系 Department of Physics |
論文出版年: | 2012 |
畢業學年度: | 100 |
語文別: | 中文 |
論文頁數: | 168 |
中文關鍵詞: | 釕基 、鐵基 、拉曼散射 、二階拉曼 、耦合 、雙磁振子 、同位素效應 |
英文關鍵詞: | ruthenium-based, iron-based, Raman-scattering, second order Raman, coupling, two-magnon, isotope effect |
論文種類: | 學術論文 |
相關次數: | 點閱:179 下載:9 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文研究 Sr2Y(Ru1-xCux)O6 與 Fe(Se,Te) 超導材料的變溫拉曼散射光譜,經由分析拉曼特徵峰隨各種變因的改變,探討晶格結構和磁性及超導態的相關性。第一部份中,我們研究銅離子的摻雜與溫度對於 Sr2YRuO6 晶格結構的影響,實驗結果顯示,隨著銅離子的摻雜量增加,拉曼峰半高寬變大,代表晶格內部無序度擴增。同時,二階與一階拉曼散射峰的強度比值亦隨著銅離子摻雜量增加而變大,由樣品的光學電導率證實,此為入射光子能量 (2.3 eV) 接近樣品吸收峰 (2.35 eV) 造成的共振拉曼效應增強所致。當樣品的溫度降低,在 Sr2YRuO6 的弱鐵磁耦合溫度 (TC = 135 K) 以及釕離子的尼爾溫度 (TN, Ru = 23 K) 附近,我們觀察到由自旋-聲子交互作用所引起的拉曼峰頻率藍移及半高寬變窄的現象。此外,x = 0.4 超導樣品的 Y-O 與 Ru-O 八面體氧離子的伸張振動模於超導相變溫度 (Tc = 30 K) 以下顯現由自洽能效應所造成的聲子軟化。另外,二階與一階拉曼散射峰的強度比值隨著溫度的降低而上升,與低溫下自陷態激子的生命期增加有關。
第二部份,FeSe 單晶樣品的室溫非偏振拉曼散射光譜具有 4 個主要的拉曼峰,其頻率位置位在 104 cm-1、178 cm-1、193 cm-1 以及 255 cm-1,分別屬於 Eg(1)、A1g、B1g 及 Eg(2) 對稱性,另在高頻區域顯現具有 B1g 對稱性的寬廣雙磁振子散射訊號,其峰值中心位置約在 2222 cm-1。以羅侖茲模型分析光譜數據,B1g 對稱性高頻拉曼峰的半高寬在 230 K 以下急遽變寬,並於 90 K 以下轉為變窄,象徵著晶格內部反鐵磁域隨著溫度的下降發生改變,影響自旋-電荷交互作用,造成 FeSe 電阻率在特定溫度展現異常。此外,B1g 對稱性低頻拉曼峰在超導相變溫度 (Tc = 8.8 K) 附近頻率展現異常紅移且半高寬變窄,應與電子-聲子耦合效應有關。
最後,我們分析三種鐵同位素多晶樣品 xFeSe0.35Te0.65 (x = 54、 56,及57) 的拉曼散射光譜,隨著鐵質量數增加,A1g、B1g 以及 Eg(2) 對稱性拉曼峰的頻率紅移,表示晶格常數隨之變大,與 x 光繞射實驗結果相互呼應,進一步分析鐵離子相關的 B1g 對稱性拉曼峰的頻率位置偏移量,符合古典簡諧振子模型的預測。此外,我們發現兩個微弱的 1350 cm-1 與 1600 cm-1 拉曼峰,此為鐵離子 3d 軌域於晶格場分裂所致。有趣地是,比較三種鐵同位素樣品的 A1g 與 B1g 對稱性拉曼峰於低溫下的羅侖茲模型擬合參數,顯示在結構扭曲溫度 100 K 及超導相變溫度 13 K 附近的變化趨勢展現不一致性。
We present Raman-scattering studies of Sr2Y(Ru1-xCux)O6 and Fe(Se,Te). Our aim is to investigate the interplay among lattice, electronic, and magnetic excitations in these novel materials.
First, with increasing Cu content, the linewidth of Raman-active phonon modes broadens, reflecting an increased lattice disorder. When the temperature is lowered, Ru-related phonon modes exhibit a blueshift at the weak-ferromagnetic transition temperature (TC = 135 K) and the Ru’s Neal temperature (TN, Ru = 23 K), indicating a spin-phonon interaction. In the case of the x = 0.4 sample, Y-O and Ru-O stretching modes show a softening below superconducting transition temperature (Tc = 30 K), suggesting the presence of self-energy effect. Furthermore, the intensity ratio of the second to first order Raman peaks is increasing with Cu doping, that is likely due to resonance Raman-scattering effect. With decreasing temperature, this intensity ratio shows an enhancement, which is related with the increased lifetime of “self-trapped” exciton.
Second, Raman-scattering spectrum of FeSe exhibits four phonon modes at about 104, 178, 193, and 255 cm-1, displaying symmetries of Eg(1), A1g, B1g, and Eg(2). Moreover, the observed B1g two-magnon excitation near 2222 cm-1 is broadened at 230 K and then narrowing below 90 K, correlated with the variation of the resistivity data. Additionally, the B1g phonon mode shows a redshift below Tc (~ 8.8 K) driven by an electron-phonon interaction.
Finally, with different iron isotope substitution in xFeSe0.35Te0.65, the peak positions of A1g, B1g, and Eg(2) phonon modes shift to lower frequencies, indicating a decreased force constant by lattice dilatation, in agreement with the observations in x-ray diffraction data. Furthermore, the variation of frequency position of B1g phonon mode is consistent with the predictions of simple spring constant model. Two high-frequency modes are observed at about 1350 and 1600 cm-1, attributed to the electronic Raman scattering from 3d-orbitals splitting of Fe2+ ion. Interestingly, the A1g and B1g Raman peaks and their linewidth exhibit irregular temperature dependence at 100 K and 13 K.
[1]http://www.bruker-est.com/nbti.html
[2]http://www.docstoc.com/docs/29648411/HTS-filter
[3]http://siro.moe.edu.tw/teach/query.php?action=read_content&d=1246963778&p=896
[4]A. Schilling, M. Cantoni, J. D. Guo, and H. R. Ott, “Superconductivity above 130 K in the Hg-Ba-Ca-Cu-O system”, Nature (London) 363, 56 (1993).
[5]N. Miyakawa, P. Guptasarma, J. F. Zasadzinski, D. G. Hinks, and K. E. Gray, “Strong dependence of the superconducting gap on oxygen doping from tunneling measurements on Bi2Sr2CaCu2O8-δ”, Phys. Rev. Lett. 80, 157 (1998).
[6]B. Revaz, J. Y. Genoud, A. Junod, K. Neumaier, A. Erb, and E. Walker, “d-wave scaling relations in the mixed-state specific heat of YBa2Cu3O7”, Phys. Rev. Lett. 80, 3364 (1998).
[7]T. Bauch, F. Lombardi, F. Tafuri, A. Barone, G. Rotoli, P. Delsing, and T. Claeson, “Macroscopic quantum tunneling in d-wave YBa2Cu3O7-δ Josephson junctions”, Phys. Rev. Lett. 94, 087003 (2005).
[8]Y. Maeno, Y. Maeno, H. Hashimoto, K. Yoshida, S. Nishizaka, T. Fujita, J. G. Bednorz, and F. Lichtenberg, “Superconductivity in a layered perovskite without copper”, Nature (London) 372, 532 (1994).
[9]I. I. Mazin and D. J. Singh, “Ferromagnetic spin fluctuation induced superconductivity in Sr2RuO4”, Phys. Rev. Lett. 79, 733 (1997).
[10]F. Laube, G. Goll, H. V. Löhneysen, M. Fogelström, and F. Lichtenberg, “Spin-triplet superconductivity in Sr2RuO4 probed by andreev reflection”, Phys. Rev. Lett. 84, 1595 (2000).
[11]M. K. Wu , S. R. Sheen, D. C. Ling, C. Y. Tai, G. Y. Tseng, D. I. Chen, D. Y. Chen, F. Z. Chien, and F. C. Zhang, “Superconductivity in a Ru-based double perovskite”, Czechoslovak Journal of Physics 46, Suppl. S6 (1996).
[12]M. K. Wu, D. Y. Chen, F. Z. Chien, S. R. Sheen, D. C. Ling, C. Y. Tai, G. Y. Tseng, D. H. Chen, and F. C. Zhang, “Anomalous magnetic and superconducting properties in a Ru-based double perovskite”, Z. Phys. B 102, 37 (1997).
[13]Y. Kamihara, T. Watanabe, and M. Hirano, “Iron-based layered superconductor La(O1-xFx)FeAs (x = 0.05 ~ 0.12) with Tc = 26 K”, J. Am. Chem. Soc. 130, 3296 (2008).
[14]M. Rotter, M. Tegel, and D. Johrendt, “Superconductivity at 38 K in the iron arsenide (Ba1-xKx)Fe2As2”, Phys. Rev. Lett. 101, 107006 (2008).
[15]X. C. Wang, Q. Q. Liu, Y. X. Lv, W. B. Gao, L. X. Yang, R. C. Yu, F. Y. Li, and C. Q. Jin, “The superconductivity at 18 K in LiFeAs system”, Solid State Commun. 148, 538 (2008).
[16]F. C. Hsu, J. Y. Luo, K. W. Yeh, T. K. Chen, T. W. Huang, P. M. Wu, Y. C. Lee, Y. L. Huang, Y. Y. Chu, D. C. Yan, and M. K. Wu, “Superconductivity in the PbO-type structure α-FeSe”, Proc. Natl. Acad. Sci. USA, 105, 14262 (2008).
[17]J. Paglione and R. L. Greene, “High-temperature superconductivity in iron-based materials”, Nature Physics 6, 645 (2010).
[18]D. R. Harshman, W. J. Kossler, A. J. Greer, D. R. Noakes, C. E. Stronach, E. Koster, M. K. Wu, F. Z. Chien, J. P. Franck, I. Isaac, and J. D. Dow, “Spin-glass behavior, spin fluctuations, and superconductivity in Sr2YRu1-xCuxO6”, Phys. Rev. B 67, 054509 (2003).
[19]J. D. Dow and D. R. Harshman, “SrO and BaO high-temperature superconductivity”, Physica C 388, 447 (2003).
[20]H. A. Blackstead, J. D. Dow, and D. R. Harshman, “Sr2YRu1-xCuxO6 : Evidence for SrO-layer superconductivity”, Journal of Superconductivity: Incorporating Novel Magnetism 13, 6 (2000).
[21]H. L. Liu, C. C. Chen, F. Z. Chien, and M. K. Wu, “Inelastic light scattering studies of superconducting Ru-based double perovskites”, Physica C 388, 319 (2003).
[22]E. Galstyan, Y. Xue, M. Iliev, Y. Sun, and C. W. Chu, “Origin of the superconductivity in the Y-Sr-Ru-O and Y-Sr-Cu-O systems”, Phys. Rev. B 76, 014501 (2007).
[23]S. M. Rao, M. K. Wu, K. J. Wang, N. Y. Yen, M. C. Ling, H. L. Liu, and C. L. Chen, “Effect of Pb on the properties of Sr2YRu1-xCuxO6 crystals grown from PbO-PbF2 solutions at high temperatures”, Cryst. Res. Technol. 42, 558 (2007).
[24]S. Margadonna, Y. Takabayashi, Y. Ohishi, Y. Mizuguchi, Y. Takano, T. Kagayama, T. Nakagawa, M. Takata, and K. Prassides, “Pressure evolution of the low-temperature crystal structure and bonding of the superconductor FeSe (Tc = 37 K)”, Phys. Rev. B 80, 064506 (2009).
[25]J. N. Millican, D. Phelan, E. L. Thomas, J. B. Leão, and E. Carpenter, “Pressure-induced effects on the structure of the FeSe superconductor”, Solid State Commun. 149, 707 (2009).
[26]T. L. Xia, D. Hou, S. C. Zhao, A. M. Zhang, G. F. Chen, J. L. Luo, N. L. Wang, J. H. Wei, Z. Y. Lu, and Q. M. Zhang, “Raman phonons of α-FeTe and Fe1.03Se0.3Te0.7 single crystals”, Phys. Rev. B 79, 140510(R) (2009).
[27]N. Katayama, S. Ji, D. Louca, S. Lee, M. Fujita, T. J. Sato, J. Wen, Z. Xu, G. Gu, G. Xu, Z. Lin, M. Enoki, S. Chang, K. Yamada, and J. M. Tranquada, “Investigation of the spin-glass regime between the antiferromagnetic and superconducting phases in Fe1+ySexTe1-x”, Journal of the Physical Society of Japan 79, 113702 (2010).
[28]P. Kumar, A. Kumar, S. Saha, D. V. S. Muthu, J. Patnaik, U. V. Waghmare, A. K. Ganguli, and A. K. Sood, “Anomalous Raman scattering from phonons and electrons of superconducting FeSe0.82”, Solid State Commun. 150, 557 (2010).
[29]J. Bardeen, L. N. Cooper, and J. R. Schrieffer, “Theory of superconductivity”, Phys. Rev. 108, 1175 (1957).
[30]D. G. Hinks, D. R. Richards, B. Dabrowski, D. T. Marx, and A. W. Mitchell, “The oxygen isotope effect in Ba0.625K0.375BiO3”, Nature (London) 335, 419 (1988).
[31]S. L. Bud'ko, G. Lapertot, C. Petrovic, C. E. Cunningham, N. Anderson, and P. C. Canfield, “Boron isotope effect in superconducting MgB2 ”, Phys. Rev. Lett. 86, 1877 (2001).
[32]P. M. Shirage, K. Miyazawa, K. Kihou, H. Kito, Y. Yoshida, Y. Tanaka, H. Eisaki, and A. Iyo, “Absence of an appreciable iron isotope effect on the transition temperature of the optimally doped SmFeAsO1-y superconductor”, Phys. Rev. Lett. 105, 037004 (2010).
[33]D. G. Hinks, D. Rosenmann, H. Claus, M. S. Bailey, and J. D. Jorgensen, “Large Ca isotope effect in the CaC6 superconductor”, Phys. Rev. B 75, 014509 (2007).
[34]P. M. Shirage, K. Kihou, K. Miyazawa, C. H. Lee, H. Kito, H. Eisaki, T. Yanagisawa, Y. Tanaka, and A. Iyo, “ Inverse iron isotope effect on the transition temperature of the (Ba,K)Fe2As2 superconductor”, Phys. Rev. Lett. 103, 257003 (2009).
[35]A. Mascarenhas, H. K. Yoshida, J. Pankove, and S. K. Deb, “Copper isotope effect in Raman scattering on superconducting YBa2Cu3O7-δ”, Phys. Rev. B 39, 4699 (1989).
[36]T. Strach, T. Ruf, E. Schonherr, and M. Cardona, “Raman study of the copper isotope effect in YBa2Cu3O7-δ”, Phys. Rev. B 51, 16460 (1995).
[37]R. Khasanov, M. Bendele, K. Conder, H. Keller, E. Pomjakushina, and V. Pomjakushin, “Iron isotope effect on the superconducting transition temperature and the crystal structure of FeSe1−x”, New J. Phys. 12, 073024 (2010).
[38]O. Kim and M. Granath, “Lattice expansion from isotope substitution in iron-based superconductors”, Phys. Rev. B 84, 092507 (2011).
[39]R. H. Liu, T. Wu, G. Wu, H. Chen, X. F. Wang, Y. L. Xie, J. J. Yin, Y. J. Yan, Q. J. Li, B. C. Shi, W. S. Chu, Z. Y. Wu, and X. H. Chen, “A large iron isotope effect in SmFeAsO1-xFx and Ba1-xKxFe2As2”, Nature (London) 459, 64 (2009).
[40]鄧勃、宁永成、劉密新著,儀器分析,清華大學出版社,民國八十年五月,第一版。
[41]H. Kuzmany, “Solid-State Spectroscopy”, Springer-Verlag Berlin Heidelberg (1998).
[42]R. P. Singh and C. V. Tomy, “Anomalous magnetic properties of Sr2YRuO6”, Phys. Rev. B 78, 024432 (2008).
[43]G. Cao, Y. Xin, C. S. Alexander, and J. E. Crow, “Weak ferromagnetism and spin-charge coupling in single-crystal Sr2YRuO6”, Phys. Rev. B 63, 184432 (2001).
[44]K. W. Yeh, T. W. Huang, Y. L. Huang, T. K. Chen, F. C. Hsu, P. M. Wu, Y. C. Lee, Y. Y. Chu, C. L. Chen, J. Y. Luo, D. C. Yan, and M. K. Wu, “Tellurium substitution effect on superconductivity of the α-phase iron selenide”, EPL 84, 37002 (2008).
[45]B. C. Sales, A. S. Sefat, M. A. McGuire, R. Y. Jin, and D. Mandrus, “Bulk superconductivity at 14 K in single crystals of Fe1+yTexSe1-x”, Phys. Rev. B 79, 094521 (2009).
[46]S. M. Rao, H. L. Liu, M. C. Ling, B. H. Mok, T. W. Huang, C. L. Chen, H. H. Hsieh, and M. K. Wu, “Raman spectroscopic investigation of the single crystals of Sr2YRu1-xCuxO6 solid- solutions grown from high temperature solutions”, unpublished (2010).
[47]梁高蓁,國立臺灣師範大學物理研究所碩士論文,民國九十五年七月。
[48]F. C. Hsu, J. Y. Luo, K. W. Yeh, T. K. Chen, T. W. Huang, P. M. Wu, Y. C. Lee, Y. L. Huang, Y. Y. Chu, D. C. Yan, and M. K. Wu, “Superconductivity in the PbO-type structure α-FeSe”, PNAS 105, 14262 (2008).
[49]C. W. Luo, I. H. Wu, P. C. Cheng, J. Y. Lin, K. H. Wu, T. M. Uen, J. Y. Juang, T. Kobayashi, D. A. Chareev, O. S. Volkova, and A. N. Vasiliev, “Quasiparticle dynamics and phonon softening in FeSe superconductors”, Phys. Rev. Lett. 108, 257006 (2012).
[50]Y. Tsuge, Y. Tanaka, A. Iyo, H. Eisaki, and T. Nishio, “Inverse iron isotope effect in FeSe0.35Te0.65”, presentation EUCAS (2011)..
[51]凌孟傑,國科會大專學生專題研究計畫研究成果報告,民國九十六年六月。
[52]C. L. Chen, S. M. Rao, K. J. Wang, F. C. Hsu, Y. C. Lee, C. L. Dong, T. S. Chan, J. F. Lee, M. C. Ling, H. L. Liu, and M. K. Wu, “Investigation of the unoccupied states in Sr2YRuO6 single crystals doped with Cu”, New J. Phys. 11, 073024 (2009).
[53]K. F. Berggren and B. E. Sernelius, “Band-gap narrowing in heavily doped many-valley semiconductors”, Phys. Rev. B 24, 1971 (1981).
[54]J. Wagner, “Photoluminescence and excitation spectroscopy in heavily doped n- and p-type silicon”, Phys. Rev. B 29, 2002 (1984).
[55]P. G. Klemens, “Anharmonic decay of optical phonons”, Phys. Rev. 148, 845 (1966).
[56]P. Kumar, S. Saha, D. V. S. Muthu, J. R. Sahu, A. K. Sood, and C. N. R. Rao, “Raman evidence for orbiton-mediated multiphonon scattering in multiferroic TbMnO3”, J. Phys. Condens. Matter 22, 115403 (2010).
[57]M. N. Iliev, A. P. Litvinchuk, H. G. Lee, C. L. Chen, M. L. Dezaneti, and C. W. Chu, “Raman spectroscopy of SrRuO3 near the paramagnetic-to-ferromagnetic phase transition”, Phys. Rev. B 59, 364 (1999).
[58]W. Baltensperger and J. S. Helman, “Influence of magnetic order in insulators on optical phonon frequency”, Helv. Phys. Acta. 41, 668 (1986).
[59]P. Kumar, A. A. Bera, D. V. S. Muthu, A. Kumar, U. V. Waghmare, L. Harnagea, C. Hess, S. Wurmehl, S. Singh, B. Büchner, and A. K. Sood, “Raman evidence for superconducting gap and spin-phonon Coupling in superconductor Ca(Fe0.95Co0.05)2As2”, J. Phys. Cond. Matt. 23, 255403 (2011).
[60]V. G. Hadjiev, X. J. Zhou, T. Strohm, M. Cardon, Q. M. Lin, and C. W. Chu, “Strong superconductivity-induced phonon self-energy effects in HgBa2Ca3Cu4O10-δ”, Phys. Rev. B 58, 1043 (1998).
[61]K. Y. Choi, P. Lemmens, G. Güntherodt, Y. G. Pashkevich, V. P. Gnezdilov, P. Reutler, L. P. Gaudart, B. Büchner, and A. Revcolevschi, “Orbiton-mediated multiphonon scattering in La1-xSrxMnO3”, Phys. Rev. B 72, 024301 (2005).
[62]L. Martı´n-Carro´n and A. D. Andre´s, “Excitations of the orbital order in RMnO3 manganites: Light scattering experiments”, Phys. Rev. Lett. 92, 175501 (2004).
[63]J. Andreasson, J. Holmlund, C. S. Knee, M. Käll, L. Börjesson, S. Naler, J. Bäckström, M. Rübhausen, A. K. Azad, and S. G. Eriksson, “Franck-Condon higher order lattice excitations in the LaFe1-xCrxO3 (x = 0, 0.1, 0.5, 0.9, 1.0) perovskites due to Fe-Cr charge transfer effects”, Phys. Rev. B 75, 104302 (2007).
[64]P. B. Allen and V. Perebeinos, “Self-trapped exciton and Franck-Condon spectra predicted in LaMnO3”, Phys. Rev. Lett. 83, 4828 (1999).
[65]A. E. Pantoja, H. J. Trodahl, A. Fainstein, R. G. Pregliasco, R. G. Buckley, G. Balakrishnan, M. R. Lees, and D. M. Paul, “O(Mn) vibrational bands in double-layered manganites: First and second order Raman scattering”, Phys. Rev. B 63, 132406 (2001).
[66]V. Perebeinos and P. B. Allen, “Multiphonon resonant Raman scattering predicted in LaMnO3 from the Franck-Condon process via self-trapped excitons”, Phys. Rev. B 64, 085118 (2001).
[67]W. Zhang, S. Sang, C. Xue, and D. Papadimitriou, “Raman tensor and selection rules for a chemical vapor transport-grown chalcopyrite single crystal”, J. Raman Spectrosc. 36, 777 (2005).
[68]Z. Qin, C. O’Malley, K. Lo, T. Zhou, and S. W. Cheong, “Crystal field excitations in the Raman spectra of FeSe1-x”, Solid State Commun. 150, 768 (2010).
[69]K. Okazaki, S. Sugai, S. Niitaka, and H. Takagi, “Phonon, two-magnon and electronic Raman scattering of Fe1+yTe1−xSex”, Phys. Rev. B 83, 035103 (2011).
[70]A. M. Zhang, J. H. Xiao, Y. S. Li, J. B. He, D. M. Wang, G. F. Chen, B. Normand, and Q. M. Zhang, “Two-magnon Raman scattering in A0.8Fe1.6Se2 systems (A = K, Rb, Cs, and Tl): Competition between superconductivity and antiferromagnetic order”, Phys. Rev. B 85, 214508 (2012).
[71]H. Shi, Z. B. Huang, J. S. Tse, and H. Q. Lin, “Magnetic behavior of Fe(Se,Te) systems: First-principles calculations”, J. Appl. Phys. 110, 043917 (2011).
[72]F. Ma, W. Ji, J. Hu, Z. Y. Lu, and T. Xian, “First-principles calculations of the electronic structure of tetragonal α-FeTe and FeSe crystals: Evidence for a bicollinear antiferromagnetic order”, Phys. Rev. Lett. 102, 177003 (2009).
[73]程光煦著,拉曼 布里淵散射,科學出版社,民國九十六年,第二版。
[74]M. K. Wu, K. W. Yeh, H. C. Hsu, T. W. Huang, T. K. Chen, J. Y. Luo, M. J. Wang, H. H. Chang, C. T. Ke, M. H. Moh, and S. M. D. Rao, “The development of the superconducting tetragonal PbO-type FeSe and related compounds”, Physica Status Solidi B 247, 500 (2010).
[75]T. Imai, K. Ahilan, F. L. Ning, T. M. McQueen, and R. J. Cava, “Why does undoped FeSe become a high-Tc superconductor under pressure?”, Phys. Rev. Lett. 102, 177005 (2009).
[76]蔡一銘,國立臺灣師範大學物理研究所碩士論文,民國九十九年六月。