簡易檢索 / 詳目顯示

研究生: 詹東杰
Chan, Tung-Chieh
論文名稱: 三階CIFF架構三角積分調變器設計與實現
Design and Implementation of Third-Order CIFF structure Delta Sigma Modulator
指導教授: 郭建宏
Kuo, Chien-Hung
口試委員: 郭建宏
Kuo, Chien-Hung
黃育賢
Hwang, Yuh-Shyan
陳建中
Chen, Jiann-Jong
口試日期: 2025/01/03
學位類別: 碩士
Master
系所名稱: 電機工程學系
Department of Electrical Engineering
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 53
中文關鍵詞: 類比數位轉換器三角積分調變器反向器基底放大器雜訊移頻逐次逼近式類比數位轉換器CIFF架構
英文關鍵詞: Analog-to-Digital Converter, Delta-Sigma Modulator, Inverter-Based Amplifier, Noise Shaping SAR ADC, CIFF Architecture
研究方法: 實驗設計法
DOI URL: http://doi.org/10.6345/NTNU202500204
論文種類: 學術論文
相關次數: 點閱:8下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著半導體製程的進步發展,Power, Performance, Area (PPA)三大指標是晶片設計最高原則,所有製程與晶片設計都圍繞著這三個指標,如今技術越來越進步,市場需求持續上升,為了滿足物聯網多裝置需求,同時又需要兼顧到全球暖化與環境保護的議題,低功耗與高效能的晶片不斷的推陳出新,高取樣率的電路被廣泛使用,低功耗的逐次逼近式類比數位轉換器為現在主流。

    本論文為使用1.4V電源的三階三角積分調變器,採用自給式回授反向器做為雜訊移頻之積分器,優點為不需要額外的偏壓及回授電路,能降低功耗和節省佈局面積,三階CIFF低失真架構,各級積分器只需要處理雜訊,不包含輸入的電壓訊號,因此不需要高增益運算放大器,積分器能設計的較為節能以降低功耗,此外,為了降低開關的穿隧效應導致回授電壓不穩定,本文電路使用分裂電容,不僅能提高運算放大器的穩定性,更能減少一個電壓源輸入 (Vcm) 使用。本文之電路實踐採用 T18 0.18um 1P6M CMOS 製程,晶片面積為0.454mm2,此電路取樣頻率為2.56MHz,頻寬為20kHz時,最佳效能SNDR 81.09dB,SNR 81.61dB,ENOB 13.18bits,頻寬為10kHz時,最佳效能SNDR 86.24dB,SNR 87.31dB,ENOB 14.03bits。在1.4V供應電壓時消耗功率為125.9uW。

    As semiconductor processes continue to advance, the three key factors of Power, Performance, and Area (PPA) have become the highest principles in IC design. All processes and chip designs revolve around these three indicators. With the continuous advancement of technology and the increasing market demand, the need to satisfy the requirements of multiple IoT devices while also addressing global warming and environmental protection issues has led to the continuous introduction of low-power and high-performance chips. High sampling rate circuits are widely used, and low-power Successive Approximation Register Analog-to-Digital Converters (SAR ADCs) have become mainstream.
    This paper presents a third-order delta-sigma modulator operating with a 1.4V power supply. The modulator employs a self-bias inverter as the integrator for noise shaping, which has the advantage of not requiring additional bias and feedback circuits, reducing power consumption and saving layout area. The third-order CIFF low-distortion architecture processes only noise in each stage integrator without including the input signal, which eliminates the need for high-gain operational amplifiers. Consequently, the integrators can be designed with lower power consumption to further reduce energy usage. Additionally, to mitigate feedback voltage instability caused by switch tunneling effects, this circuit adopts split capacitors, which not only enhance the operational amplifier's stability but also eliminate the need for an additional voltage source input (Vcm). The circuit implementation in this paper uses the T18 0.18µm 1P6M CMOS process, with a chip area of 0.454mm². The circuit's sampling frequency is 2.56 MHz, with a bandwidth of 20 kHz and 10kHz , achieving a maximum performance of SNDR 81.09 dB, 86.24dB, SNR 81.61 dB, 87.31dB and ENOB 13.18 bits, 14.03 bit, respectively. The power consumption at 1.4V supply voltage is 125.9 µW.

    致   謝 i 摘   要 iv ABSTRACT v 目   錄 vi 表 目 錄 ix 圖 目  錄 x 第一章  緒論 1 1.1  研究動機與背景 1 1.2  論文章節介紹 2 第二章  類比數位轉換器介紹 3 2.1  基本原理 3 2.2  效能指標 4 2.2.1  訊號雜訊比(Signal-to-Noise Ratio, SNR) 4 2.2.2  訊號雜訊失真比(Signal-to-Noise and Distortion Ratio, SNDR) 5 2.2.3  有效位元數(Effective Number of Bits, ENOB) 5 2.2.4  動態範圍(Dynamic Range, DR) 6 2.2.5  無雜波干擾動態範圍(Spurious-Free Dynamic Range,SFDR ) 6 2.3  ADC雜訊考量 6 2.3.1  量化雜訊(Quantization Noise) 6 2.3.2  熱雜訊(Thermal Noise) 7 2.3.3  時脈抖動(Clock Jitter) 8 2.4  超取樣 9 第三章  基本電路元件設計 10 3.1  交換電容式電路(SWITCHED-CAPACITOR CIRCUIT) 10 3.2  取樣電容 10 3.3  靴帶式開關(BOOTSTRAPPED SWITCH) 12 3.4  比較器 13 3.4.1  比較器之直流偏移電壓分析(Vos) 14 3.4.2  比較器之雜訊分析 15 3.4.3  比較器之延遲時間分析 16 3.5  反向器基底轉導放大器 16 3.6  電容式數位類比轉換器 19 3.7  分開電容型切換電路 20 3.8 邏輯電路 21 3.9 金屬絕緣層金屬電容(MIM 電容) 22 第四章  使用三階CIFF架構的NS SAR類比數位轉換器 23 4.1  線性模型的MATLAB模擬 23 4.2  分裂式積分電容 25 4.3  放大器之有限增益 28 4.4  電路架構 31 4.4.1 電路模擬結果 32 4.5  電路佈局與實現 33 4.6  晶片量測 39 4.7  量測環境 41 4.8  量測結果 42 第五章  總結與未來展望 45 5.1  總結 45 5.2  未來展望 47 參 考 文 獻 48 自     傳 53 競 賽 經 歷 53 求 學 經 歷 53

    [1] Y. -H. Hwang, Y. Song, J. -E. Park and D. -K. Jeong, "A Fully Passive Noise-Shaping SAR ADC Utilizing Last-Bit Majority Voting and Cyclic Dynamic Element Matching Techniques," in IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 30, no. 10, pp. 1381-1390, Oct. 2022.
    [2] D. -H. Lee et al., "A 25-kHz-BW 97.4-dB-SNDR SAR-Assisted Continuous-Time 1–0 MASH Delta-Sigma Modulator With Digital Noise Coupling," in IEEE Journal of Solid-State Circuits, vol. 59, no. 10, pp. 3232-3241, Oct. 2024.
    [3] P. Vogelmann, J. Wagner, M. Haas and M. Ortmanns, "A Dynamic Power Reduction Technique for Incremental Delta-Sigma Modulators," in IEEE Journal of Solid-State Circuits, vol. 54, no. 5, pp. 1455-1467, May 2019.
    [4] J. S. Cho et al., "A 1.2-V 108.9-dB A-Weighted DR 101.4-dB SNDR Audio Sigma-Delta ADC Using a Multi-Rate Noise-Shaping Quantizer," in IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 65, no. 10, pp. 1315-1319, Oct. 2018.
    [5] L. Lv, X. Zhou, Z. Qiao and Q. Li, "Inverter-Based Subthreshold Amplifier Techniques and Their Application in 0.3-V Delta-Sigma-Modulators," in IEEE Journal of Solid-State Circuits, vol. 54, no. 5, pp. 1436-1445, May 2019.
    [6] Z. Li et al., "A 16.5-μW 73.7-dB-SNDR Second-Order Fully Passive Noise-Shaping SAR ADC With a Hybrid Switching Procedure," in IEEE Access, vol. 11
    [7] R. S. A. Kumar and N. Krishnapura, "Multi-Channel Analog-to-Digital Conversion Using a Delta-Sigma Modulator Without Reset and a Modulated-Sinc-Sum Filter," in IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 69, no. 1, pp. 186-195, Jan. 2022.
    [8] D. A. Johns, K. Martin, Analog Integrated Circuit Design, John Wiley & Sons, Inc., 1997.

    [9] R. Jacob Baker, CMOS: Mixed-Signal Circuit Design, Second Edition, Wiley, IEEE Press, 2008.
    [10] R. Schreier and G. C. Temes, Understanding Delta-Sigma Data Converters, New York: Wiley, 2004.
    [11] S. Norsworthy, R. Schreier, and G. Temes, Delta-Sigma Data Converters: Theory, Design, and Simulation, New York: IEEE Press, 1996.
    [12] J. McCreary and P. R. Gray, “A high-speed, all-MOS successive-approximation weighted capacitor A/D conversion technique,” IEEE Int. Solid-State Circuits Conf., Feb. 1975, pp. 38–39.
    [13] C. Liu, S. Chang, G. Huang and Y. Lin, “A 10-bit 50-MS/s SAR AD C With a Monotonic Capacitor Switching Procedure,” IEEE J. Solid-State Circuits, vol. 45, no. 4, pp. 731-740, Apr. 2010.
    [14] T. Tille, J. Sauerbrey, and D. Schmitt-Landsiedel, “A Low-Voltage MOSFET-Only ΣΔ Modulator for Speech Band Applications Using Depletion-Mode MOS-Capacitors in Combined Series and Parallel Compensation,” in Proc. IEEE Int. Symp. Circuits Syst., May 2001, pp. 376-379.
    [15] J. Sauerbrey, T. Tille, D. S. Landsiedel, and R. Thewes, “A 0.7-V MOSFET-Only Switched-Opamp ΣΔ Modulator in Standard Digital CMOS Technology,” IEEE J. Solid-State Circuits, vol. 37, no. 12, pp. 1662-1669, Dec. 2002.
    [16] J.B. Razavi, “The bootstrapped switch [a circuit for all seasons],” IEEE Solid State Circuits Mag., vol. 7, no. 3, pp. 12–15, Summer 2015.
    [17] B. Razavi, “TSPC Logic [A Circuit for All Seasons],” IEEE Solid-State Circuits Magazine, vol. 8, no. 4, pp. 10-13, Fall 2016.
    [18] Z. Chen, M. Miyahara and A. Matsuzawa, “A 2nd order fully-passive noise-shaping SAR ADC with embedded passive gain,” in Proc. IEEE Asian Solid-State Circuits Conf. (A-SSCC), Nov. 2016, pp. 309-312.
    [19] W. Guo and N. Sun, “A 12.0-ENOB 61 μW noise-shaping SAR ADC with a passive integrator,” in Proc. Conf. 42nd Eur. Solid-State Circuits Conf. (ESSCIRC), Sep. 2016, pp. 405-408.
    [20] X. Tang et al., “A 13.5-ENOB, 107-μW noise-shaping SAR ADC with PVT-robust closed-loop dynamic amplifier,” IEEE J. Solid-State Circuits, vol. 55, no. 12, pp. 3248-3259, Dec. 2020.
    [21] H. Ghaedrahmati, J. Zhou, and R. B. Staszewski, “A 38.6-fJ/conv.-step inverter-based continuous-time bandpass ΔΣ ADC in 28 nm using asynchronous SAR quantizer,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 68, no. 9, pp. 3113-3117, Sep. 2021.
    [22] S. Liao and J. Wu, “A 1-V 175-μW 94.6-dB SNDR 25-kHz bandwidth delta-sigma modulator using segmented integration techniques,” IEEE J. Solid-State Circuits, vol. 54, no. 9, pp. 2523-2531, Sep. 2019.
    [23] B. Wang, S.-W. Sin, U. S. Pen, F. Maloberti, and R. P. Martins, “A 550-μW 20-kHz BW 100.8-dB SNDR Linear-Exponential Multi-Bit Incremental ΔΣ ADC With 256 Clock Cycles in 65-nm CMOS,” IEEE J. Solid-State Circuits, vol. 54, no. 4, pp. 1161-1172, Apr. 2019.
    [24] J. S. Cho et al., “A 1.2-V 108.9-dB A-Weighted DR 101.4-dB SNDR Audio ΔΣ ADC Using a Multi-Rate Noise-Shaping Quantizer,” IEEE Trans. Circuits and Syst. II, Exp. Briefs, vol. 65, no. 10, pp. 1315-1319, Oct. 2018.
    [25] L. Lv, X. Zhou, Z. Qiao, and Q. Li, “Inverter-based subthreshold amplifier techniques and their application in 0.3-V ΔΣ modulators,” IEEE J. Solid-State Circuits, vol. 54, no. 5, pp. 1436-1445, May 2019.
    [26] M. Honarparvar, I. M. De la Rosa, and M. Sawan, “A 0.9-V 100-μW feedforward adder-less inverter-based MASH ΔΣ modulator with 91-dB dynamic range and 20-kHz bandwidth,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 65, no. 11, pp. 3675-3687, Nov. 2018.
    [27] D. -H. Lee et al., "A 25-kHz-BW 97.4-dB-SNDR SAR-Assisted Continuous-Time 1–0 MASH Delta-Sigma Modulator With Digital Noise Coupling," in IEEE Journal of Solid-State Circuits, vol. 59, no. 10, pp. 3232-3241, Oct. 2024.
    [28] Z. Tang, R. Zamparette, Y. Furuta, T. Nezuka and K. A. A. Makinwa, "A ±25A Versatile Shunt-Based Current Sensor with 10kHz Bandwidth and ±0.25% Gain Error from -40°C to 85°C Using 2-Current Calibration," 2022 IEEE International Solid-State Circuits Conference (ISSCC)
    [29] L. Somappa and M. S. Baghini, "A Compact Fully Passive Loop Filter-Based Continuous Time Delta-Sigma Modulator for Multi-Channel Biomedical Applications," in IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 67, no. 2, pp. 590-599, Feb. 2020
    [30] L. Lv, X. Zhou, Z. Qiao and Q. Li, "Inverter-Based Subthreshold Amplifier Techniques and Their Application in 0.3-V Delta-Sigma-Modulators," in IEEE Journal of Solid-State Circuits, vol. 54, no. 5, pp. 1436-1445, May 2019.
    [31] Z. Li et al., "A 16.5-μW 73.7-dB-SNDR Second-Order Fully Passive Noise-Shaping SAR ADC With a Hybrid Switching Procedure," in IEEE Access, vol. 11
    [32] R. S. A. Kumar and N. Krishnapura, "Multi-Channel Analog-to-Digital Conversion Using a Delta-Sigma Modulator Without Reset and a Modulated-Sinc-Sum Filter," in IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 69, no. 1, pp. 186-195, Jan. 2022.
    [33] Y. -H. Hwang, Y. Song, J. -E. Park and D. -K. Jeong, "A Fully Passive Noise-Shaping SAR ADC Utilizing Last-Bit Majority Voting and Cyclic Dynamic Element Matching Techniques," in IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 30, no. 10, pp. 1381-1390, Oct. 2022.

    下載圖示
    QR CODE