簡易檢索 / 詳目顯示

研究生: 鄭夢慈
Meng-Tzu Cheng
論文名稱: 血管加壓素對大白鼠顏面神經呼吸活動的影響
The effect of arginine vasopressin on respiratory-related facial nerve activity in rats
指導教授: 黃基礎
Hwang, Ji-Chuu
學位類別: 碩士
Master
系所名稱: 生命科學系
Department of Life Science
論文出版年: 2003
畢業學年度: 91
語文別: 中文
中文關鍵詞: 血管加壓素顏面神經延腦腹外側膈神經
英文關鍵詞: arginine vasopressin, facial nerve, ventrolateral medulla, phrenic nerve
論文種類: 學術論文
相關次數: 點閱:626下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究的主要目的是要探討血管加壓素 (arginine vasopressin; AVP) 作用在延腦腹外側 (ventrolateral medulla;VLM) 對膈神經及顏面神經呼吸活動的影響,並且探討這樣的影響是否藉由AVP V1A接受器所達成。
    實驗動物為250-350 g雄性Wistar品系大鼠,以urethane (1.2 g/kg)腹腔麻醉,進行氣管及股動、靜脈插管,切斷兩側迷走神經後,將大鼠以臥姿安置在腦定位儀上,給予gallamine triethiodide (i.v.) 痲痹,接上人工呼吸器,分離並紀錄膈神經及顏面神經的呼吸活動,調整混合氣體使呼氣末二氧化碳濃度分別為正常 (0.04-0.05) 及二氧化碳濃度增加 (0.07-0.08) 的情形下進行實驗。
    利用微量注射技術以麩胺酸鈉 (glutamate;Glu) 確定VLM的位置並區分為升壓區與降壓區,待確定後,注射1.5x10-8 IU及3.0x10-8 IU劑量的AVP至VLM,觀察膈神經活動、顏面神經呼吸活動與血壓的反應;此外,在同一區域分別以0.3及0.6 ng的AVP V1A接受器拮抗劑預處理,立即再注射同劑量的AVP,觀察膈神經、顏面神經與血壓有無改變。
    結果顯示AVP注射在VLM內側,血壓不變,膈神經及顏面神經的呼吸活動受到抑制,稱為第一型反應 (Type I response);而AVP作用在VLM外側,血壓上升,膈神經與顏面神經的呼吸活動同樣受到抑制,稱為第二型反應 (Type II response);呼氣末二氧化碳濃度增加,會減弱AVP對於膈神經呼吸活動的抑制作用,AVP對於顏面神經的抑制卻不會因為呼氣末二氧化碳濃度增加而減弱;以AVP V1A接受器拮抗劑預處理會抵消AVP對膈神經與顏面神經呼吸活動的抑制作用;若以phentolamine預處理,AVP對呼吸的抑制作用仍在,顯示AVP對呼吸的抑制作用不是升壓引起感壓反射所造成的。這些結果暗示內生性AVP神經纖維可能經由VLM區域神經元上的V1A接受器而調控心肺功能,並可能藉由影響顏面神經而影響上呼吸道的暢通。

    The aim of the present study was to examine the effects of Arg8-vasopressin (AVP) which was microinjected into ventrolateral medulla (VLM) on phrenic nerve activity and respiratory-related facial nerve discharge. In addition, we further identified whether these effects of AVP on cardiopulmonary functions were mediated by AVP V1A receptor.
    Adult male Wistar rats (250-350 g) were used. Under urethane (1.2g/kg i.p.) anesthesia, tracheotomy was performed and femoral artery and vein were catheterized. The animal was placed in a prone position on a stereotaxic instrument. The phrenic and facial nerves on one side was isolated and cut distally. Activities of both nerves were recorded via an amplifier and then integrated. Ends-tidal fractional concentration of gas was maintained at normncapnia or hypercapnia in hyperoxia. AVP and AVP V1A antagonist were microinjected into the VLM to observe the responses of phrenic and facial nerve activity.
    The results revealed that:(1) AVP microinjected into the medial portion of the VLM produced apnea, decreases in phrenic and facial nerve activities without change in blood pressure (Type I response). (2) AVP microinjected into the lateral portion of the VLM produced apnea, decrease in phrenic and facial nerve activities and concomitant pressor effect (Type II response). (3) These inhibitions of AVP upon phrenic and respiratory-related facial nerves were partially attenuated by hypercapnia. (4) These cardiopulmonary responses could be totally abolished by treatment of vasopressin V1A antagonist ([β-Mercapto-β, β-cyclopentamethyl enepropionyl1,-O-Me-Tyr2-Arg8]-vasopressin). (5) Pretreatment with phentolamine could abolish the pressor effect but not affect the inhibitory action on PNA evoked by AVP. These results implied that the modulatory effects of an endogenous vasopressinergic pathway on cardiopulmonary functions were mediated by vasopressin V1A receptor located on the neurons within the VLM. In addition, this pathway may also influence upper airway patency by the modulation on respiratory-related facial nerve.

    縮寫表 ………………………………………………………… i 中文摘要 ……………………………………………………… iii 英文摘要 ……………………………………………………… v 壹、緒論 ……………………………………………………… 1 一、延腦腹外側 …………………………………………… 1 二、顏面神經 ……………………………………………… 6 三、血管加壓素 …………………………………………… 9 四、研究的重要性 ………………………………………… 12 五、研究目的 ……………………………………………… 12 貳、材料與方法 ……………………………………………… 14 一、動物的準備 ……………………………………………… 14 二、神經分離與紀錄 ………………………………………… 14 三、刺激方式 ………………………………………………… 15 四、組織切片鑑定 …………………………………………… 17 五、結果與統計分析 ………………………………………… 17 六、實驗設計 ………………………………………………… 19 參、結果 ……………………………………………………… 21 一、glutamate作用於VLM對呼吸與血壓的影響 ………… 21 二、AVP作用於VLM對呼吸與血壓的影響 ………………… 22 (一) Type I的結果 …………………………………… 23 (二) Type II的結果 …………………………………… 29 肆、討論 ……………………………………………………… 36 一、微量注射技術 ………………………………………… 36 二、AVP的注射點為rVRG吻端 …………………………… 39 三、AVP抑制膈神經的吸氣活動 …………………………… 40 四、AVP抑制顏面神經的吸氣活動 ………………………… 43 五、注射AVP抑制呼吸活動與血壓無關 …………………… 46 六、AVP V1A接受器達成對於呼吸與血壓的調控 ………… 47 七、AVP抑制呼吸作用所隱含的生理意義 ………………… 48 八、結論 …………………………………………………… 50 伍、參考文獻 ………………………………………………… 51 陸、 圖表與說明 ……………………………………………… 59

    Agarwal, S. K. and F. R. Calaresu. Monosynaptic connection from caudal to rostral ventrolateral medulla in the baroreceptor reflex pathway. Brain Res. 555: 70-74, 1991.
    Ahn, D. K., K. H. Kim, J. S. Ju, S. Kwon, and J. S. Park. Microinjection of arginine vasopressin into the central nucleus of amygdale suppressed nociceptive jaw opening reflex in freely moving rats. Brain Res. Bull. 35(1): 117-121, 2001.
    Alescio-Lautier, B., V. Paban, and B. Soumireu-Mourat. Neuromodulation of memory in the hippocappus by vasopressin. Eur. J. Pharmacol. 405: 63-72, 2000.
    Barr, M. L. Brainstem: nuclei and tract. In: Barr’s: the human nervous system. Ed. By Kiernan, J. A. lippincott-Raven press. New York, pp. 115-143, 1998.
    Bianchi, A. L., M. Denavit-Saubié and J. Champagnat. Central control of breathing in mammals: neuronal circuitry, membrance properties, and neurotransmitters. Physiol. Rev. 75(1): 1-45, 1995.
    Campos, R. R. and R. M. McAllen. Tonic drive to sympathetic premotor neurons pf rostral ventrolateral medulla from caudal pressor area neurons. Am. J. Physiol. 276: R1209-R1213, 1999.
    Chtiravanshi, V. C. and H. N. Sapru. Phrenic nerve responses to chemical stimulation of the subregions of ventral medullary respiratory neuronal group in the rat. Brain Res. 821: 443-460, 1999.
    Chtiravanshi, V. C. and H. N. Sapru. Microinjection of glycine into the pre-Bötzinger complex inhibit phrenic nerve activity in the rat. Brain Res. 947: 25-33, 2002.
    Chuang, C. –W., M. –T. Cheng, J. –T. Lin, H. –Y. Hsien, H. –Y. Hung, and J. –C. Hwang. Arginine vasopressin produces inhibition upon respiration without pressor effect in the rat. Chinese J. Physiol. 46 (2): 71-78, 2003..
    Collins, H. L., D. W. Rodenbaugh, and S. E. DiCarlo. Central blockade of vasopressin V1 receptor attenuates postexercise hypotension. Am. J. Physiol. 281: R375-R380, 2001.
    Dunnett, C. W. New tables for multiple comparisons. Biometrics 20: 482-491, 1964.
    Fung, M. –L., J. –M. Liaw, and J. –C. Hwang. Effect of electrical stimulation of the superior laryngeal nerve on respiratory-modulated facial nerve activity in cats. Chinese J. Physiol. 32(2): 81-91, 1989.
    Goodson, J. L. and A. H. Bass. Social behavior functions and related anatomical characteristics of vasotocin / vasopressin systems in vertebrate. Brain Res. Rev. 35: 246-265, 2001.
    Horiuchi, J. and R. A. L. Dampney. Evidence for tonic disinhibition of RVLM sympathoexcitatory neurons from the caudal pressor area. Auton. Neurosci.: Basic and Clin. 99: 102-110, 2002.
    Horne, R. S. C., P. Franco, and T. M. Adamson, J. Groswasser and A. Kahn. Effects of body position and arousal characteristics in infants. Early Human Develop. 69: 25-33, 2002.
    Hwang, J. –C. and S. –M. Chen. The effect of vasopressin on respiratory mechanics in the rat. Biol. Bull. NTNU 12: 15-22, 1977.
    Hwang, J. –C., C. –T. Chien, and W. M. St.-John. Characterization of respiratory-related activity of the facial nerve. Respir. Physiol. 73: 175-188, 1988.
    Hwang, J. –C., C. K. Su, C. –T. Yen, and C. Y. Chai. Presence of neuronal cell bodies in the sympathetic pressor areas of dorsal and ventrolateral medulla inhibiting phrenic nerve discharge in cat. Clin. Auton. Res. 2: 189-196, 1992.
    Inder, W. C., J. Hellemans, M. P. Swanney, T. C. R. Prickett, and R. A. Donald. Prolonged exercise increases peripheral plasma ACRH, CRH, and AVP in male athletes. J. Appl. Physiol. 85: 836-841, 1998.
    Jung, R., E. N. Bruce, and P. G. Katona. Cardiorespiratory responses to glutamatergic antagonists in the caudal ventrolateral medulla of rats. Brain Res. 564: 286-295, 1991
    Kanjhanm, R., J. Lipski, B. Kruszewska, and W. Rong. A comparative study of pre-sympathetic and Bötzinger neurons in the rostral ventrolateral medulla (RVLM) of the rat. Brain Res. 699: 19-32, 1995.
    Kc, P., M. A. Haxhiu, F. P. Tolentino-Silva, M. Wu, C. O. Trouth, and S. O. Mack. Paraventricular vasopressin-containing neurons project to brain stem and spinal cord respiratory-related sites. Respir. Physiol. Neurobiol. 133: 75-88, 2002.
    Kubo, T., Y. Hagiwara, D. Sekiya, and R. Fukumori. Evidence for involvement of the lateral parabrachial nucleus in mediation of cholinergic inputs to neurons in the rostral ventrolateral medulla of the rat. Brain Res. 789: 23-31, 1998.
    Kubo, T., Y. Hagiwara, D. Sekiya, and R. Fukumori. Midbrain central gray is involved in mediation of cholinergic inputs to the rostral ventrolateral medulla of the rat. Brain Res. Bull. 50: 41-46, 1999.
    Kubo, T., Y. Hagiwara, D. Sekiya, S. Chiba, and R. Fukumori. Cholinergic inputs to rostral ventrolateral medulla pressor neurons from hypothalamus. Brain Res. Bull. 53: 257-282, 2000
    Leng, G., C. H. Brown, and J. A. Russell. Physiological pathways regulating the activity of magnocellular neurosecretory cell. Prog. Neurobiol. 57: 625-655, 1999.
    Lin, C. –Y. and J. –C. Hwang. Responses of respiratory-modulated facial nerve activity to activation of the ventrolateral subarea of the nucleus of the tractus solitsrius. Chinese J. Physiol. 37: 185-191, 1994.
    Lipski, J., M. C. Bellingha, M. J. Weat, and P. Pilowsky. Limitations of the techonique of pressure microinjection of excitatory amino acids for evoking responses from localized regions of the CNS. J. Neurosci. Methods 26: 169-176, 1988.
    McCrimmon, D.R., A. Monnier, F. Hayashi, and E. J. Zuperku. Pattern formation and rhythm generation in the ventral respiratory group. Exp. Pharmacol. Physiol. 27: 126-131, 2000.
    Nakayama, Y., Y. Takano, K. Eguchi, and K. Migita. Modulation of the arterial baroreceptor reflex by the vasopressin receptor in the area postrema of the hypertensive rats. Neurosci. Lett. 236: 179-182, 1997.
    Nattie, E. CO2, brainstem chemoreceptors and breathing. Prog. Neurobiol. 59: 299-331, 1999.
    Okishino, Y., S. Niioka, T. Takeuchi, H. Nishio, F. Hata, and K. Takatsuji. Differences in mediator of nonadrenergic, noncholinergic relaxation of the distal colon between Wistar-ST and Spague-Dawley strains of rats. Eur. J. Pharmacol. 388: 97-105, 2000.
    Paxinos, G. and C. Wartson. The rat brain in stereotaxic coordinates. Academic Press. 1986.
    Pierce, R. J. and C. J. Worsnop. Upper airway function and dysfunction in respiration. Clin. and Exp. Pharmacol. Physiol. 26: 1-10, 1999.
    Pyner, S. and J. H. Coote. Identification of an efferent projection from the paraventricular nucleus of the hypothalamus terminating close to spinally projecting rostral ventrolateral medulla neurons. Neuroscience 88(3): 949-957, 1999.
    Pyner, S. and J. H. Coote. Identification of branching paraventricular nucleus of the hypothalamus that project to the rostroventrolateral medulla and spinal cord. Neuroscience 100(3): 549-556, 2000.
    Ramirez, J. M., S. W. Schwarzacher, O. Pierrefiche, and B. M. Olivera. Selective lesioning of the cat pre-Bötzinger complex in vivo eliminates breathing but not gasping. J. Physiol. 507(3): 895-907, 1998.
    Rekling, J. C. and J. L. Feldmen. Pre-Bötzinger complex and pacemaker neurons: hypothesized site and kernel for respiratory rhythm generation. Annu. Rev. Physiol. 60: 385-405, 1998.
    Richter, D. W. and H. Seller. Baroreceptor effects on medullary respiratory neurons of the cat. Brain Res. 86: 168-171. 1975.
    Risvanis, J., M. Naitoh, C. I. Johnston, and L. M. Burrell. In vivo and vitro characterisation of a nonpeptide vasopressin V1A and V2 receptor antagonist (YM087) in the rat. Eur. J. Pharmacol. 381: 23-30: 1999.
    Schwarzacher, S. W., J. C. Smith, and S. W. Richter. Pre-Bötzinger complex in the cat. J. Neurophysiol. 73(4): 1452-1461, 1995.
    Smith, J. C., H. H. Ellenberger., K. Ballanyi, D. W. Richter, and J. L. Feldman. Pre-Bötzinger complex: a brainstem region that may generate respiratory rhythm in mammals. Science 25: 726-729, 1991.
    Smith, J. C., R. J. Butera, Jr., N. Koshiya, C. Del Negro, C. G. Wilson, and S. M. Johnson. Respiratory rhythm generation in neonatal and adult mammals: the hybrid pacemaker-network model. Respir. Physiol. 122: 131-147, 2000.
    Solomon, I. C. Excitation of phrenic and sympathetic output during acute hypoxia: contribution of medullary oxygen detectors. Respir. Physiol. 121: 101-117, 2000.
    Stebbins, C. L., S. Bonigut, L. R. Liviakis, and P. A. Munch. Vasopressin acts in the area postrema to attenuate the exercise pressor reflex in anesthetized cats. Am. J. Physiol. 274: H2116-H2122, 1998.
    St. John, W. M. Neurogenesis of patterns of automatic ventilatory activity. Prog. Neurobiol. 56: 97-117, 1998.
    St. John, W. M. and I. A. Rybak. Influence of levels of carbon dioxide and oxygen upon gasping in perfused rat preparation. Respir. Physiol. 129: 279-287, 2002.
    St. John, W. M., I. A. Rybak, and J. F. R. Paton. Potential switch from eupnea to fictive gasping after blockade of glycine transmission and potassium channels. Am. J. Physiol. 283: R721-R731, 2002.
    St. John, W. M. and J. F. R. Paton. Neurogenesis of gasping does not require inhibitory transmission using GABAA or glycine receptors. Respir. Physiol. Neurobiol. 132: 265-277, 2002.
    Strohl, K. P., M. J. Kensley, M. Halletee, N. A. Saunders, and R. H. Ingram, Jr. Activation pf upper airway muscles before onset of inspirstion in normal humans. J. Appl. Physiol. 49: 638-642, 1980.
    Sun, M. –K., I. T. Jeske and D. J. Reis. Cyanide excites medullary sympathoexcitatory neurons in rats. Am. J. Physiol. 262: R182-R189, 1992.
    Sun, Q. J., A. K. Goodchild., J. P. Chalmers, and P. M. Pilowsky. The pre-Bötzinger complex and phase-spanning neurons in the adult rat . Brain Res. 809: 204-213, 1998.
    Suratt, P. M., R. McTIER, and S. C. Wihoit. Alae nasi electromyographic activity and timing in obstructive sleep apnea. J. Appl. Physiol. 58(4): 1252-1256, 1985.
    Thibonnier, M., L. N. Berti-Mattera, N. Dulin, D. M. Conarty, and R. Mattera. Signal transduction pathways of the human V1-vascular, V2-renal, V3-pituitary vasopressin and oxytocin receptors. Prog. Brain. Res. 119: 147-161, 1998.
    Tian, G. –F., J. H. Peever, and J. Duffin. Bötzinger-complex expiratory neurons monosynaptic phrenic motoneurons in the decerebrate rat. Exp. Brain Res. 122: 149-156, 1998.
    Tribollet, E. Y. Arsenijevic, and C. Barberis. Vasopressin binding sites in the central nervous systems: distribution and regulation. Prog. Brain. Res. 119: 45-55, 1998.
    Voisin, D. L. and C. W. Bourque. Integration of sodium and osmosensory signals in vasopressin neurons. Trends Neurosci. 25(4): 199-205, 2002.
    Walker, J. K. L. and D. B. Jennings. Angiotensin mediates stimulation of ventilation after vasopressin V1 receptor blockade. J. Appl. Physiol. 76(6): 2517-2526, 1994.
    Walker, J. K. L. and D. B. Jennings. Ventilatory effects of angiotensin and vasopressin in conscious rats. Can. J. Physiol. Pharmacol. 74: 1258-1264, 1996.
    Walker, J. K. L. and D. B. Jennings. Ventilatory and metabolic effects of hpercapnia in conscious rats:AVP V1 recptor block. Can. J. Physiol. Pharmacol. 76: 361-266, 1998.
    Wallenstein, S., C. L. Zucker, and J. L. Fleiss. Some statistical methods useful in circulation research. Circ. Res. 47(1): 1-9, 1980.
    Wang, N. –B. and J. –C. Hwang. Comparison of respiratory-modulated activities of the alae nasi muscles between guinea pigs and rats. Acta Zoologica Taiwanica 4(1): 33-42, 1993.
    Willette, B. N., P. P. Barcas, A. J. Krieger, and H. N. Sapru. Vasopressor and depressor areas in the rat medulla. Neuropharmacology 22(9): 1071-1079, 1983.
    Wu, J. –S. and J. –C. Hwang. Respiratory-related facial nerve activity in response to activation of the rostral ventrolateral medulla in the cat. Chinese J. Physiol. 40(2): 97-105, 1997.
    Yang, Z. and J. H. Coote. Influence of the hypothalamic paraventricular nucleus on cardiovascular neurons in the rostral ventrolateral medulla of the rat. J. Physiol. 513: 521-530, 1998.
    Yarkov. A., S. Montero, M. Lemus, and E. Roces de Alvarez-Buylla. Arginine-vasopressin in nucleus of the tractus solitarius induces hyperglycemia and brain glucose retention. Brain Res. 9.2: 212-222, 2001.
    Zheng Y., D. Riche, J. C. Rekling, A. S. Foutz, and M. Denavit-Saubié. Brainstem neurons projecting to the rostral ventral respiratioy group (VRG) in the medulla oblongata of the rat revealed by co-application of NMDA and biocytin. Brain Res. 782: 113-125, 1998.
    吳忠信和黃基礎 增加大白鼠無效腔體積對鼻唇肌呼吸活動的影響。生物科學 32(2): 17-28, 1989.
    張建鴻 大鼠延腦吻端腹外側對顏面神經呼吸活動的影響。國立台灣師範大學生物系碩士班論文,1995。
    王瑜君 大白鼠延腦背側對顏面神經呼吸活動的影響。國立台灣師範大學生物系碩士班論文,1998。
    莊菁雯 血管加壓訴對大白鼠舌下神經呼吸活動的影響。國立台灣師範大學生物系碩士班論文,2001。
    曾嬿霖、吳忠信、黃基礎 血管加壓素降低大白鼠鼻唇肌呼吸活動。生物學報38: 37-47, 2003.

    QR CODE