研究生: |
程科翔 Cheng, Ke-Siang |
---|---|
論文名稱: |
RuO2/Graphene/Polyaniline 複合材料之超級電容開發 Development of supercapacitors using RuO2/Graphene/Polyaniline composite materials |
指導教授: |
楊啟榮
Yang, Chii-Rong 吳俊緯 Wu, Jim-Wei |
學位類別: |
碩士 Master |
系所名稱: |
機電工程學系 Department of Mechatronic Engineering |
論文出版年: | 2016 |
畢業學年度: | 104 |
語文別: | 中文 |
論文頁數: | 124 |
中文關鍵詞: | 超級電容 、靜電紡絲技術 、聚苯胺 、石墨烯 |
英文關鍵詞: | supercapacitor, electrospinning, polyaniline (PANi), graphene |
DOI URL: | https://doi.org/10.6345/NTNU202205165 |
論文種類: | 學術論文 |
相關次數: | 點閱:143 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究使用靜電紡絲(Electrospinning)與靜電噴霧(Electrospray)技術,製備奈米纖維,藉由熱處理製備碳奈米纖維,做為超級電容之電極。首先,本研究以聚苯乙烯(Polystyrene, PS)與聚苯胺(Polyaniline, PANi)作為複合溶液,製備出線徑約534 nm的PS:PANi奈米纖維。接著利用靜電噴霧技術,將石墨烯(Graphene)溶液沉積至PS:PANi纖維表面,製備出堆疊式PS:PANi:graphene奈米纖維,石墨烯片約為5 m能附著在PS:PANi奈米纖維薄膜,且不會造成底部PS:PANi奈米纖維形貌的變化;本研究也成功以靜電紡絲技術,將聚苯乙烯、聚苯胺以及石墨烯作為複合溶液,製備出線徑約418 nm的複合式PS:PANi:graphene奈米纖維;本研究利用靜電紡絲技術,將聚丙烯腈(Polyacrylonitrile, PAN)與聚苯胺作為複合溶液,藉由熱處理製備出線徑約690 nm的PAN:PANi碳奈米纖維。接著將聚丙烯腈、聚苯胺以及石墨烯作為複合溶液,藉由熱處理製備出線徑約400 nm的PAN:PANi:G碳奈米纖維;此外,製備PAN:PANi與PAN:PANi:G碳奈米纖維薄膜之導電率,分別為28.5 mS/cm與98.1 mS/cm,碳奈米纖維具有導電性。透過拉曼光譜分析石墨烯材料的D band、G band與2D band峰值,表示利用本研究的電紡絲技術已具備將石墨烯複合於碳奈米纖維之能力。最後,將封裝完成之超級電容元件進行循環伏安法量測,其中PS:PANi奈米纖維、堆疊式PS:PANi:graphene奈米纖維、複合式PS:PANi:graphene奈米纖維、PAN:PANi碳奈米纖維與PAN:PANi:G碳奈米纖維五種電極之比電容值,分別為0.032 F/g、0.025 F/g、0.023 F/g、151 F/g、61 F/g。實驗結果顯示,PAN:PANi碳奈米纖維相較於PS:PANi奈米纖維電極之比電容高出4700倍。由於聚丙烯腈、聚苯胺與石墨烯經由熱處理之碳奈米纖維,具有良好的導電性與高比表面積,可提升整體電容器之特性。
In this study, the electrospinning and electrospray techniques are used to prepare composite and carbon nanofibers, which are acted as the current collector and electrodes of supercapacitors. Firstly, Polystyrene (PS) and Polyaniline (PANi) are mixed as a composite solution, which is electrospun as PS:PANi nanofiber. The diameter of PS:PANi nanofiber is 534 nm. Then, graphene solution is deposited to prepare for PS:PANi:graphene nanofiber on the PS:PANi nanofiber membrane surface by electrospray techniques. Graphene sheet about 5 μm size can be attached PS:PANi naofiber, and can’t change PS:PANi naofiber morphology; In this study, the electrospinning techniques is used to prepare for composite PS:PANi:graphene nanofiber in PS, PANi, and graphene are mixed solution. The diameter of composite PS:PANi nanofiber is 418 nm; The fabrication process is that the Polyacrylonitrile (PAN) and PANi are mixed as a composite solution, which is electrospun and thermal treatment as PAN:PANi carobn nanofiber. The diameter of PAN:PANi carbon nanofiber is 690 nm. Then, the electrospinning techniques combing with a thermal treatment are used to prepare for PAN:PANi:G carbon nanofiber in PAN, PANi, and graphene are mixed solution. The diameter of PAN:PANi:G carbon nanofiber is 400 nm; Moreover, average electrical conductivity of PAN:PANi and PAN:PANi:G carbon nanofiber are 28.5 mS/cm and 98.1 mS/cm, respectively. By the Raman spectra measurement, the D band, G band and 2D band are obtained in PAN:PANi and PAN:PANi:G electrodes. It indicates the graphene is electrospun to the composite carbon nanofiber. Finally, cyclic voltammetry measurement of supercapacitors, the calculated specific capacitances (F/g) are 0.032 (PS:PANi), 0.025 (PS:PANi:graphene), 0.023 (composite PS:PANi:graphene), 151 (PAN:PANi) and 61 (PAN:PANi:G) under various carbon nanofiber of electrodes, respectively. The results show that the specific capacitances of PAN:PANi carbon nanofiber electrodes is 4700 times larger than PS:PANi nanofiber electrodes. Due to PAN, PANi and graphene via thermal treatment of carbon nanofiber with good electrical conductivity and high specific surface area can improve the characteristics of overall supercapacitors.
1. http://www.tecategroup.com/ultracapacitors-supercapacitors/ultracapacitor-FAQ.php
2. R. Kotz and M. Carlen "Principles and application of electrochemical capacitors" Electrochimica acta, vol. 45, pp. 2483-2498 (2000).
3. http://www.giichinese.com.tw/publisher/sne.shtml
4. D. H. Reneker and I. Chun "Nanometre diameter fibres of polymer, produced by electrospinning" Nanotechnology, vol. 7, pp. 216-223 (1996).
5. Q. P. Pham, et al. Mikos "Electrospinning of Polymeric nanofiber for tissue engineering applications: a review" Tissue engineering, vol. 12, pp. 1197-1211 (2006).
6. Z. Dong, et al. "Electrospinning materials for energy-related applications and devices" Power sources, vol.196, pp. 4886-4904 (2011).
7. V. Thavasi, et al. "Electrospun nanofibers in energy and environmental applications" Energy & environmental science, vol. 1 , pp. 205-221 (2008).
8. N. Bhardwaj and S. C. Kundu "Electrospinning: A fascinating fiber fabrication technique" Biotechnology advances, vol. 28 , pp. 325-347 (2010).
9. H. Wu, et al. "A transparent electrode based on a metal nanotrough network" Nat nanotechnol, vol. 8, pp. 421-425 (2013).
10. N. G. Rim, et al. "Current approaches to electrospun nanofibers for tissue engineering" Biomedical materials, vol. 8, pp. 14102-14116 (2013).
11. F. A. Sheikh, et al. " 3D electrospun silk fibroin nanofibers for fabrication of artificial skin" Nanomedicine: nanotechnology, biology, and medicine, vol. 11, pp. 681-691 (2015).
12. L. Jiang, et al. "A lotus-leaf-like superhydrophobic surface: a porous microsphere/nanofiber composite film prepared by electrohydrodynamics" Angewandte chemie, vol. 43, pp. 4338-4341 (2004).
13. X. Wang, et al. "Engineering biomimetic superhydrophobic surfaces of electrospun nanomaterials" Nano today, vol. 6, pp. 510-530 (2011).
14. E. J. Ra, et al. "High power supercapacitors using polyacrylonitrile-based carbon nanofiber paper" Carbon, vol. 47, pp. 2984-2992 (2009).
15. C. C. Hu, et al. "Design and Tailoring of the Nanotubular Arrayed Architecture of Hydrous RuO2 for Next Generation Supercapacitors" Nano letters, vol. 6, pp. 2690-2695 (2006).
16. G. G. Wallace, et al. "Nanobionics: the impact of nanotechnology on implantable medical bionic devices" Nanoscale, vol. 4, pp. 4327-4347 (2012).
17. A. Formhals. "Artificial thread and method of producing same" U.S. Patent 2,187,306, Application, July, 28 (1937).
18. A. Formhals. "Method and apparatus for spinning" U.S. Patent 2,160,962, Application, July, 01 (1936).
19. A. Formhals. "Process and apparatus for preparing artificial threads" U.S. Patent 1,975,504, Application, March, 23 (1934).
20. G. Taylor. "Disintegration of water drops in an electric field" Proceedings of the royal society A: mathematical, physical and engineering sciences, vol. 280, pp. 383-397 (1964).
21. S. Blonski, et al. "Electrospinning of liquid jets" Mechanics, pp. 15-21, Warsaw, Poland, (2004).
22. A. Koski, et al. "Effect of molecular weight on fibrous PVA produced by electrospinning" Materials Letters, vol. 58, pp. 493-497 (2004).
23. H. Fong, et al. "Beaded nanofibers formed during electrospinning" Polymer, vol. 40, pp. 4585-4592 (1999).
24. D. H. Reneker, et al. "Bending instability of electrically charged liquid jets of polymer solutions in electrospinning" Journal of applied physics, vol. 87, pp. 4531-4547 (2000).
25. K. H. Lee, et al. "Mechanical behavior of electrospun fiber mats of poly(vinyl chloride)/polyurethane polyblends" Journal of polymer science: part B: polymer physics, vol. 41, pp. 1256-1262 (2003).
26. S. Megelski, et al. "Micro- and nanostructured surface morphology on electrospun polymer fibers" Macromolecules, vol. 35, pp. 8456-8466 (2002).
27. X. Yuan, et al. "Morphology of ultrafine polysulfone fibers prepared by electrospinning" Polymer international, vol. 53, pp. 1704-1710 (2004).
28. K. H. Lee, et al. "The change of bead morphology formed on electrospun polystyrene fibers" Polymer, vol. 44, pp. 4029-4034 (2003).
29. L. Wannatong, et al. "Effects of solvents on electrospun polymeric fibers: preliminary study on polystyrene" Polymer international, vol. 53, pp. 1851-1859 (2004).
30. C. J. Buchko, et al. "Processing and microstructural characterization of porous biocompatible protein polymer thin films" Polymer, vol. 40, pp. 7397-7407 (1999).
31. K. H. Lee, et al. "Influence of a mixing solvent with tetrahydrofuran and N,N-dimethylformamide on electrospun poly(vinyl chloride) nonwoven mats" Journal of polymer science part B: polymer physics, vol. 40, pp. 2259-2268 (2002).
32. 吳大誠、杜仲良、高緒珊, "奈米纖維" 五南書局 (2004).
33. F. Shi, L. Li, et al. "Metal oxide/hydroxide-based materials for supercapacitors" The royal society of chemistry, vol. 4, pp. 41910-41921 (2014).
34. J. P. Zheng, et al. "Hydrous ruthenium oxide as an electrode material for electrochemical capacitors" Journal of the electrochemical society, vol. 142, pp. 2699-2703 (1995).
35. B. E. Conway. "Electrochemical supercapacitors" Springer science, New York (1990).
36. A. J.bard and L.R.Faulkner. "Electrochemical methods, fundamentals and applications" John Wiley & Sons, New York (1998).
37. M. Ue, et al. "Electrochemical properties of organic liquid electrolytes based on quaternary onium salts for electrical double-layer capacitors" Journal of the electrochemical society, vol. 141, pp. 2989-2996 (1994).
38. 林月微和方家振, "鋰離子電池用高分子電解質", 工業材料, 第338期, 2015.
39. J. Gamby, et al. "Studies and characterisations of various activated carbons used for carbon/carbon supercapacitors" Journal of power sources, vol. 101, pp. 109-116 (2001).
40. C. Kim. "Electrochemical characterization of electrospun activated carbon nanofibres as an electrode in supercapacitors" Journal of power sources, vol. 142, pp. 382-388 (2005).
41. D. Yu and L. Dai. "Self-assembled graphene/carbon nanotube hybrid films for supercapacitors" Journal of physical chemistry letters, vol. 1, pp. 467-470 (2010).
42. A. J. Bard and L. R. Faulkner. "Electrochemical methods, fundamentals and applications" John Wiley & Sons, New York (1998).
43. E. A. Seddon and K. R. Seddon. "The chemistry of ruthenium", Elsevier science pubilshers b. v.,1984.
44. W. D. Ryden, et al. "Electrical transport properties of IrO2 and RuO2", Physical review b, vol.1, pp. 1494-1500 (1970).
45. C. W. Allen, et al. "Cascade‐driven migration of structural interfaces: A new type of irradiation‐induced phase transformation" Applied physics letters, vol. 50, pp. 1876 (1987).
46. M. Pa, et al. "Highly super capacitive electrodes made of graphene/poly(pyrrole)." Chem. Commun.(Camb), vol. 20, pp. 5753-5755 (2011).
47. A. A. Bolzan, et al. "Structural studies of rutile-type metal dioxides " Acta crystallographic section b, vol. B53, pp.373-380 (1997).
48. L. A. Bursill, et al. "Comparison of lead zirconate titanate thin films on ruthenium oxide and platinum electrodes" American institute of physics, vol. 75, pp. 1521-1525 (1994).
49. E. L. Krusin, et al. "Characterization of reactively sputtered ruthenium dioxide for very large scale integrated metallization" Applied physics letters, vol. 50, pp.1879-1881 (1987).
50. S. Trassatti and G. Buzzanca. "Ruthenium dioxide: a new interesting electrode material. Solid state structure and electrochemical behaviour" Electroanal. Chem., vol. 29, pp. 1-5 (1971).
51. D. Galizzioli, et al. "Ruthenium dioxide: a new electrode material. I. Behaviour in acid solutions of inert electrolytes." Applied electrochemistry, vol. 4, pp.57-67 (1974).
52. S. H. Choi, et al. "Facile synthesis of highly conductive platinum nanofiber mats as conducting core for high rate redox supercapacitor." Electrochemical and solid-state letters, vol. 6, pp. 65-68 (2010).
53. H. Shirakawa, et al. "Synthesis of electrically conducting organic polymers: halogen derivatives of polyacetylene, (CH)x" Journal of the Chemical Society, Chemical communications, vol. 16, pp. 1972-1995 (1977).
54. K. Kanazawa, et al. "Polypyrolle an electochemically synthesized conducting organic polymer" Synthetic metals, vol. 1, pp. 329-336 (1979).
55. http://www.britannica.com/
56. B. Wessling and Z. Kessler. "Dispersion hypothesis and non-equilibrium thermodynamics key elements for a materials science of conductive polymers. A key to understanding polymer blends or other multiphase polymer system" Synthetic metals, vol. 45, pp. 119-149 (1991).
57. Z. Zhou and X. F. Wu. " High-performance porous electrodes for pseudosupercapacitors based on graphene-beaded carbon nanofibers surface-coated with nanostructured conducting polymers" Power sources, vol. 262, pp. 44-49 (2014).
58. K. S. Novoselov, et al. "Electric field effect in atomically thin carbon films" Science, vol. 306, pp. 666-669 (2004).
59. http://nobelprize.org/nobel_prizes/physics/laureates/2010/
60. C. Y. Su. Graphene: The applications in optical electronics and thermal management, SumKen (2013).
61. C. Lee, X. Wei, et al. "Measurement of the elastic properties and intrinsic strength of monolayer graphene" Science, vol. 321, pp. 385-388 (2008).
62. R. R. Nair, et al. "Fine structure constant defines visual transparency of graphene" Science, vol. 320, pp. 1308-1315 (2008).
63. H. Wang, et al. "Graphene oxide doped polyaniline for supercapacitors" Electrochemistry communications, vol. 11, pp. 1158-1161 (2009).
64. W. Lv, et al. "Low-temperature exfoliated graphenes vacuum-promoted exfoliation and electrochemical energy storage" ACS nano, vol. 3, pp. 3730-3736 (2009).
65. C. Liu, et al. "Graphene-based supercapacitor with an ultrahigh energy density" Nano letters, vol. 10, pp. 4863-4868 (2010).
66. https://curiosoando.com/que-es-el-grafeno
67. H. I. Joh, et al. "Preparation of porous carbon nanofibers derived from graphene oxide/polyacrylonitrile composites as electrochemical electrode materials" Carbon, vol. 70, pp. 308-312 (2014).
68. A. Laforgue. " All-textile flexible supercapacitors using electrospun poly(3,4-ethylenedioxythiophene) nanofibers" Power sources, vol.196 , pp. 559-564 (2011).
69. P. F. Jao, et al. "Fabrication of an all SU-8 electrospun nanofiber based supercapacitor" Journal of micromechanics and microengineering, vol. 23, pp. 114011-114019 (2013).
70. L. Deng, et al. "Supercapacitance from cellulose and carbon nanotube nanocomposite fibers" ACS applied materials & interfaces, vol. 5, pp. 9983-9990 (2013).
71. Q. Dong, et al. " Ultrasound-assisted preparation of electrospun carbon nanofiber/graphene composite electrode for supercapacitors" Power sources, vol.243 , pp. 350-353 (2013).
72. L. Liu, et al. "Nanostructured graphene composite papers for highly flexible and foldable supercapacitors" Advanced materials, vol. 10, pp. 1-8 (2014).
73. A. Palm. "Raman spectrum of polystyrene" The journal of chemical physics, vol. 55, pp. 1320-1324 (1951).
74. D. J. Gardiner, Gardiner and P. R. Graves. "Practical Raman spectroscopy", Springer-Verlag (1989).
75. H. Wang, et al. "A nanostructured graphene/polyaniline hybrid material for supercapacitors" Nanoscale, vol. 2, pp. 2164-2170 (2010).
76. S. Reich and C. Thomsen. "Raman spectroscopy of graphite" Philosophical transactions of the royal Society A mathematical physical and engineering sciences, vol. 362, pp. 2271-2288 (2004).
77. N. Ferralis. "Probing mechanical properties of graphene with raman spectroscopy" Journal of materials science, vol. 45, pp. 5135-5149 (2010).
78. M. Trchova, et al. "The conversion of polyaniline nanotubes to nitrogen-containing carbon nanotubes and their comparison with multi-walled carbon nanotubes" Polymer degradation and stability, vol. 94, pp. 928-938 (2009).