研究生: |
蔡欣樺 Hsin-Hua Tsai |
---|---|
論文名稱: |
摻雜對於 LiCu2-xZnxO2 與 HoxMn1-xS 材料拉曼散射光譜之影響 Effects of substitutional doping on Raman-scattering spectra in LiCu2-xZnxO2 and HoxMn1-xS materials |
指導教授: |
劉祥麟
Liu, Hsiang-Lin |
學位類別: |
碩士 Master |
系所名稱: |
物理學系 Department of Physics |
論文出版年: | 2012 |
畢業學年度: | 100 |
語文別: | 中文 |
論文頁數: | 132 |
中文關鍵詞: | 鋰銅氧 、鈥錳硫 、拉曼散射光譜 、軌道有序性 、擴散式響應 |
英文關鍵詞: | LiCu2O2, HoxMn1-xS, Raman-scattering spectra, orbital-ordering, diffusive scattering |
論文種類: | 學術論文 |
相關次數: | 點閱:219 下載:2 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
我們研究掺雜 Zn 離子之 LiCu2O2 單晶與掺雜 Ho 離子之MnS 多晶的拉曼散射光譜響應。藉由分析掺雜離子對拉曼特徵峰的影響,探討晶格結構與磁性和電性相轉變之間的相關性。
首先,LiCu2O2 於室溫展現 7 個 Ag 對稱性與 3 個 B1g 對稱性拉曼活性振動模,其頻率位置約為 106 cm-1、119 cm-1、173 cm-1、297 cm-1、362 cm-1、465 cm-1 及 557 cm-1,與 161 cm-1、494 cm-1 及 569 cm-1。隨著摻雜 Zn 離子濃度的增加 (x = 0.03 與 0.07),LiCu2O2 拉曼散射光譜顯現值得注意的變化包括:(i) 與氧原子沿 ab 平面振動有關之 161 cm-1 拉曼峰展現紅移,符合 x 光繞射實驗結果之 ab 軸晶格常數增大;(ii) 我們認為 106 cm-1 特徵峰屬於拉曼活性振動模,此與文獻[Phys. Rev. B 69, 104421 (2004).]所認定之 two-magnon continuum 不符;(iii) 摻雜 7 % Zn 離子的 LiCu2O2 在磁性相轉溫度 14 K 以下,492 cm-1 拉曼峰展現微小紅移,推測其與自旋-聲子耦合有關。
其次,Ho0.01Mn0.99S 於室溫展現 4 個拉曼活性振動模,其頻率位置約為 135 cm-1、227 cm-1、333 cm-1 及 585 cm-1。隨著摻雜 Ho 離子濃度的增加 (x = 0.10 與 0.30),由於 Ho3+ 離子半徑大於 Mn2+,333 cm-1 與 585 cm-1 拉曼峰有逐漸紅移的現象;(ii) 低溫時,Ho0.01Mn0.99S 展現低頻擴散拉曼散射響應,推測其與載子碰撞傳導電性有關;(iii) 333 cm-1 與 585 cm-1 拉曼峰的權重分別在高溫 350 K、500 K 及 620 K 附近顯示快速下降的趨勢,與電阻率和晶格常數的變化相互呼應,我們推測其與電子雲軌道有序性、或電荷有序性有關。
We present the Raman-scattering studies of Zn doped LiCu2O2 single crystals and Ho doped MnS polycrystalline samples. Our aim is to investigate the effects of doping on the lattice excitations in these novel materials.
First, room-temperature Raman-scattering spectrum of LiCu2O2 shows ten phonon modes at about 106 cm-1, 119 cm-1, 173 cm-1, 297 cm-1, 362 cm-1, 465 cm-1, and 557 cm-1 as well as 161 cm-1, 494 cm-1 , and 569 cm-1, displaying symmetries of Ag and B1g, respectively. As the concentration of the Zn ion increases (x = 0.03 and 0.07), there are three important features to these spectra: (i) the 161 cm-1 phonon mode that is associated with the oxygen vibrations along the ab-plane exhibits a redshift, consistent with the lattice dilatation observed in the x-ray diffraction data; (ii) the 106 cm-1 peak belongs to the lattice origin, rather than the two-magnon continuum assigned by Phys. Rev. B 69, 104421 (2004).; (iii) the 492 cm-1 phonon mode of 7 % Zn doped sample shows a slight redshift below the magnetic phase transition of 14 K, indicating a spin-phonon coupling.
Second, room-temperature Raman-scattering spectrum of Ho0.01Mn0.99S shows four phonon modes at about 135 cm-1, 227 cm-1, 333 cm-1 and 585 cm-1. With increasing Ho content, there are also three important features to these spectra: (i) the 333 cm-1 and 585 cm-1 phonon modes exhibit a redshift due the larger ionic size of Ho; (ii) diffusive-type Raman-scattering response appears at low temperatures, which is likely related with the carrier collision-dominated mechanism; (iii) the spectral weight of the 333 cm-1 and 585 cm-1 phonon modes decreases at about 350 K, 500 K, and 620 K. These results correlate with the variations of electric resistivity and the lattice constant, suggesting the possibility of orbital-ordering, or charge-ordering phenomena.
[1] M. Fiebig, T. Lottermoser, D. Frohlich, A. V. Goltsev, and R. V. Pisarev, “Observation of coupled magnetic and electric domains”, Nature 419, 818 (2002).
[2] T. Kimura, T. Goto, H. Shintani, K. Ishizaka, T. Arima, and Y. Tokura, ”Magnetic control of ferroelectric polarization”, Nature 426, 55 (2003).
[3] N. Hur, S. Park, P. A. Sharma, J. S. Ahn, S. Guha, and S. W. Cheong, “Electric polarization reversal and memory in a multiferroic material induced by magnetic fields”, Nature 429, 392 (2004).
[4] S. S. Aplesnin, L. I. Ryabinkina, O. B. Romanova, O. N. Bandurina, M. V. Gorev, A. D. Balaev, and E. V. Ermin, “Spin glass effects in CoxMn1-xS solid solutions”, Bull. Russ. Acad. Sci. Phys. 73, 965 (2009).
[5] W. Eerenstein, N. D. Nathur, and J. F. Scott, “Multiferroic and magnetoelectric materials”, Nature 442, 759 (2006).
[6] 吳宗展,國立中山大學物理研究所碩士論文,91年六月。
[7] 郭明憲,國立臺灣師範大學物理研究所碩士論文,92年七月。
[8] C. Kittel, “Introductuion to Solid State Physics”, Wiley, New York, (1996).
[9] M. P. Marder, “Condensed Matter Physics”, Wiley Interscience, New York, (2000).
[10] W. Eerenstein, N. D. Mathur, and J. F. Scott, “Multiferroic and magnetoelectric materials”, Nature 442, 17 (2006).
[11] J. Okamoto, D. J. Huang, C. Y. Mou, K. S. Chao, H. J. Lin, S. Park, S. W. Cheong, and C. T. Chen, “Symmetry of multiferroicity in a frustrated magnet TbMn2O5”, Phys. Rev. Lett. 98, 157202 (2007).
[12] M. Mostovoy, “Ferroelectricity in spiral magnets”, Phys. Rev. Lett. 96, 067601 (2006).
[13] 黃詩雯、黃迪靖,以軟 x 光探索『多鐵相變』,物理雙月刊,第五卷,第卅一卷,頁 501 - 507,2009。
[14] L. C. Chapon, G. R. Blake, M. J. Gutmann, S. Park, N. Hur, P. G. Radaelli, and S. W. Cheong, “Structural anomalies and multiferroic behavior in magnetically frustrated TbMn2O5”, Phys. Rev. Lett. 93, 177402 (2004).
[15] I. E. Sergienko, C. Sen, and E. Dagotto, “Ferroelectricity in the magnetic E-phase of orthorhombic perovskites”, Phys. Rev. Lett. 97, 227204 (2006).
[16] I. A. Sergienko and E. Dagotto, “Role of the Dzyaloshinskii-Moriya interaction in multiferroic perovskites”, Phys. Rev. B 73, 094434 (2006).
[17] H. Katsura, N. Nagaosa, and A. V. Balatsky, “Spin current and magnetoelectric effect in noncollinear magnets”, Phys. Rev. Lett. 95, 057205 (2005).
[18] S. Park, Y. J. Choi, C. L. Zhang, and S. W. Cheong, “Ferroelectricity in an S = 1/2 chain cuprate”, Phys. Rev. Lett. 98, 057601 (2007).
[19] S. Seki, Y. Yamasaki, M. Soda, M. Matsuura, K. Hirota, and Y. Tokura, “Correlation between spin helicity and electric polarization vector in quantum-spin chain magnet LiCu2O2”, Phys. Rev. Lett. 100, 127201 (2008).
[20] K. Y. Choi, S. A. Zvyagin, G. Cao, and P. Lemmens, “Coexistence of dimerization and long-range magnetic order in the frustrated spin- chain system LiCu2O2 : Inelastic light scattering study”, Phys. Rev. B 69, 104421 (2004).
[21] S. W. Huang, D. J. Huang, J. Okamoto, C. Y. Mou, W. B. Wu, K. W. Yeh, C. L. Chen, M. K. Wu, H. C. Hsu, F. C. Chou, and C. T. Chen, “Magnetic ground state and transition of a quantum multiferroic LiCu2O2”, Phys. Rev. Lett. 101, 077205 (2008).
[22] S. Zvyagin, G. Cao, Y. Xin, S. McCall, T. Caldwell, W. Moulton, L. C. Brunel, A. Angerhofer, and J. E. Crow, “Dimer liquid state in the quantum antiferromagnet compound LiCu2O2”, Phys. Rev. B 66, 064424 (2002).
[23] H. C. Hsu, J. Y. Lin, W. L. Lee, M. W. Chu, T. Imai, Y. J. Kao, C. D. Hu, H. L. Liu, and F. C. Chou, “Nonmagnetic impurity perturbation to the quasi-two-dimensional quantum helimagnet LiCu2O2”, Phys. Rev. B 82, 094450 (2010).
[24] S. S Aplesnin, А. M. Kharkov, A. I. Galyas, and V. V. Sokolov, ”Magnetic and electric properties HoxMn1-xS solid solution”, unpublished.
[25] Y. Yasui, K. Sato, Y. Kobayashi, and M. Sato, “Studies of multiferroic system LiCu2O2 I. sample characterization and relationship between magnetic properties and multiferroic nature”, J. Phys. Soc. Jpn. 78 8084720 (2009).
[26] 鄧勃、寧永成、劉密新著,儀器分析,清華大學出版社出版,中華民國八十年五月第一版。
[27] T. Masuda, A. Zheludev, A. Bush, M. Markina, and A. Vasiliev, “Competition between helimagnetism and commensurate quantum spin correlation in LiCu2O2”, Phys. Rev. Lett. 92, 177201 (2004).
[28] Y. Kobayashi, K. Sato, Y. Yasui, T. Moyoshi, M. Sato, and K. Kakura, “Studies of multiferroic system of LiCu2O2 : II. magnetic structures of two ordered phases with incommensurate modulations”, J. Phys. Soc. Japan 78, 084721 (2009).
[29] B. Roessli, U. Staub, A. Amato, D. Herlach, P. Pattison, K. Sablina, and G. A. Petrakovskii, “Magnetic phase transition in the double spin-chains compound LiCu2O2”, Physica B 296, 306 (2001).
[30] A. Rusydi, I. Mahns, S. Müller, M. Rübhausen, S. Park, Y. J. Choi, C. L. Zhang, S. W. Cheong, S. Smadici, P. Abbamonte, M. V. Zimmermann, and G. A. Sawatzky, “Multiferroicity in the spin-1/2 quantum matter of LiCu2O2”, Appl. Phys. Lett. 92, 262506 (2008).
[31] L. I. Ryabinkina, O. B. Romanova, and S. S. Aplesnin, “Sulfide compounds MexMn1-xS (Me = Cr, Fe, V, Co) : technology, transport properties, and magnetic ordering”, Bull. Russ. Acad. Sci. Phys. 72, 1050 (2008).
[32] R. Berger, A. Meetsma, S. V. Smaalen, and M. Sundberg, “The structure of LiCu2O2 with mixed-valence copper from twin-crystal data”, J. Less-Common Met. 175, 119 (1991).
[33] A. A. Gippius, E. N. Morozova, A. S. Moskvin, A. V. Zalessky, A. A. Bush, M. Baenitz, H. Rosner, and S. L. Drechsler, “NMR and local-density-approximation evidence for spiral magnetic order in the chain cuprate LiCu2O2”, Phys. Rev. B 70, R020406 (2004).
[34] H. G. V. Schnering, R. F. D. Stansfield, and G. J. McIntyre, “X-ray and neutron diffraction study of the crystal structure of MnS2”, Z. Kristallogr. 199, 13 (1992).
[35] Y. Yao, X. Zhu, H. C. Hsu, F. C. Chou, and M. El-Batanouny, “ Investigation of the structural and dynamical properties of the (001) surface of LiCu2O2”, Surface science 604, 692 (2010).
[36] K. Y. Choi, V. P. Gnezdilov, P. Lemmens, L. Capogna, M. R. Johnson, M. Sofin, A. Maljuk, M. Jansen, and B. Keimer, “Magnetic excitations and phonons in the spin-chain compound NaCu2O2”, Phys. Rev. B 73, 094409 (2006).
[37] P. G. Klemens, “Anharmonic decay of optical phonons”, Phys. Rev. 148, 845 (1966).
[38] M. K. Singh and R. S. Katiyar, “Phonon anomalies near the magnetic phase transitions in BiFeO3 thin films with rhombohedral R3c symmetry”, J. Appl. Phys. 109, 07D916 (2011).
[39] H. C. Hsu, W. L. Lee, J. Y. Lin, H. L. Liu, and F. C. Chou, “Disrupted long-range spin-spiral ordering and electric polarization in the Zn-substituted quantum helimagnet LiCu2−xZnxO2”, Phys. Rev. 81, 212407 (2010).
[40] A. Milutinović, Z. V. Popović, N. Tomić, and S. Dević, “Raman spectroscopy of polycrystalline α-MnSe”, Mater. Sci. Forum 453, 299 (2004).
[41] S. S. Aplesnin, G. A. Petrakovskii, L. I. Ryabinkina, G. M. Abramova, N. I. Kiselev, and O. B. Romanova, “Influence of magnetic ordering on resistity anisotropy of α-MnS single crystal”, Solid State Comm. 129, 195 (2004).
[42] S. Yoon, H. L. Liu, G. Schollerer, and S. L. Cooper, “Raman and optical spectroscopic studies of small-to-large polaron crossover in the perovskite manganese oxides”, Phys. Rev. B 58, 2795 (1998).
[43] H. Kuroe, J. Sasaki, T. Sekine, N. Koide, Y. Sasago, K. Uchinokura, and M. Hase, “Spin fluctuations in CuGeO3 probed by light scattering”, Phys. Rev. B 55, 409 (1997).
[44] S. Aplesnin, O. Romanova, A. Harkov, D. Balaev, M. Gorev, A. Vorotinov, V. Sokolov, and A. Pichugin, ”Metal-semiconductor transition in SmxMn1-xS solid solutions”, Phys. Status Solidi B 249, 812 (2011).
[45] S. Miyasaka, J. Fujioka, and M. Iwama, “Raman study of spin and orbital order and excitations in perovskite-type RVO3 (R = La, Nd, and Y)”, Phys. Rev. B 73, 224436 (2006).
[46] H. Kuwahara, Y. Tomioka, A. Asamitsu, Y. Moritomo, and Y. Tokura, “A first-order phase transition induced by a magnetic field”, Science 270, 961 (1995).
[47] C. Hess, B. Buchner, M. Hucker, R. Gross, and S. W. Cheong, “Phonon thermal conductivity and stripe correlations in La2-xSrxNiO4 and Sr1.5La0.5MnO4”, Phys. Rev. B 59, R10397 (1999).
[48] K. Yamamoto, T. Kimura, T. Ishikawa, T. Katsufuji, and Y. Tokura, “Raman spectroscopy of the charge-orbital ordering in layered manganites”, Phys. Rev. B 61, 14706 (2000).
[49] J. Herrero-Martin, J. Blasco, J. Garcia, G. Subias, and C. Mazzoli, “Structural changes at the semiconductor-insulator phase transition in the single-layered perovskite La0.5Sr1.5MnO4”, Phys. Rev. B 83, 184101 (2011).