簡易檢索 / 詳目顯示

研究生: 李汯緯
Hong-Wei Li
論文名稱: 空氣/電動混合動力機車 系統設計與實作驗證
System Design and Experimental Verification of Air/Electric Hybrid Scooters
指導教授: 洪翊軒
Hung, Yi-Hsuan
學位類別: 碩士
Master
系所名稱: 工業教育學系
Department of Industrial Education
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 73
中文關鍵詞: 混合動力電動機車空氣馬達控制策略系統建模
英文關鍵詞: hybrid power, electric scootor, air motor, control strategy, system modeling
論文種類: 學術論文
相關次數: 點閱:146下載:12
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要設計一套混合動力機車系統,利用空氣馬達結合電動機車,達到增加續航力及提升加速性能之目的,並透過機車底盤動力計進行性能及效益評估。首先,建立空氣馬達實驗平台,系統元件包含空氣馬達、比例控制閥組、磁粉式煞車離合器、轉速計、扭力計及空氣流量計。空氣馬達在壓縮空氣輸入壓力為4-8 kg/cm2及比例控制閥組電壓3.2-4.7 V閥開度變化條件下,測量空氣流量及扭矩。再者,藉由模擬軟體Matlab/Simulink進行空氣馬達及電動機車系統/次系統動態建模,並發展動力分配控制策略。最後,以光陽Sunboy電動機車加裝空氣馬達進行實車建立。在機構設計方面,動力傳遞減速比為12:40;在電控配置方面,將控制策略寫入快速雛型控制器並修改電控迴路系統,透過機車底盤動力計針對純電動、純空氣及混合動力模式下穩態步階響應測試及ECE40行車型態測試,測量空氣/電動混合動力機車性能及效益評估。各研究結果分別為:穩態測試結果顯示,空氣動力輔助能有效降低電池電能輸出;模擬結果顯示,空氣/電動輕型載具車系統建模與行車型態測試結果趨勢相近;能耗分析結果顯示,混合動力模式較純電動模式節省3倍電動耗能,1 kW-h能行駛約85 km,本研究結果顯示空氣/電動混合動力機車能有效降低大功率電能輸出,延長行駛之續航力及提升加速性能。

    This research mainly designs a hybrid power scooter system which uses an air motor to conbined with electric vehicle in order to increase cruising mileage and acceleration performance. A chassis dynamometer was employed for the performance assessment and benefiit analysis. First, an experimental platform was established for assessment of the innovation. System elements include an air motor, a proportional valve set, a magnetic powder brakes and sensors like: torque sensors, speed sensors and air flow meters. The air flows and torques can be measured by varying the air motor pressure within 4-8 kg/cm2; and the proportional-valve voltage within 3.2-4.7 V.
    Next, by the simulation software package: Matlab/Simulink, the dynamics of air motor and electric scooter system/subsystems have been modeled. The power distribution control has been designed as well. A commercialized electric scooter was equipped with an air motor. For the mechanical designs, the reduction gear ratio was set to be 12:40. For the mechatronics, the control strategy was coded into a rapid-prototyping controller, and the electric circuit was re-designed. By the scooter chassis dynamometer, the pure electric mode, pure air mode and hybrid power mode
    III
    can be tested under the step response and the ECE40 driving cycle scenarios. The performance and benefit evaluation of the hybrid air/electric scooter can be conducted. Results show that: for the steady test, the air-power assist can decrease the electric power from the battery effectively. Simulation results show that the dynamics of the model of the air/electric light-duty vehicle was similar to that of the real vehicle. For the energy consumption analysis, hybrid mode saves 3-times electric energy consumption compared to the pure electric mode. Traveling mileage of 85 km can be achieved when 1kW-h power was provided. This results demonstrates that the air/electric hybrid scooter can effectively reduce the high-power electric output, and can extend the mileage as well as rise the acceleration performance.

    摘 要 I ABSTRACT II 目錄 V 表目錄 VII 圖目錄 VIII 第一章 緒論 1 1.1 前言與研究動機 1 1.2 研究目的 3 1.3 研究方法 3 1.4 研究架構 5 1.5 文獻回顧 5 第二章 空氣馬達實驗平台建立與量測 10 2.1 待測空氣馬達結構與運作原理 10 2.2 實驗平台建立與量測法 13 2.3 空氣馬達性能測試結果與性能建模 15 第三章 空氣/電動輕型載具車系統建模 19 3.1 空氣動力馬達系統動態建模 20 3.2 電動機車系統/次系統動態建模 21 3.2.1 高功率電動馬達 21 3.2.2 儲能鋰電池模組 22 3.2.3 傳動系統 23 3.2.4 縱向整車動態 24 3.2.5 駕駛者與行車型態 25 3.3 空氣/電動混合機車控制策略發展 26 第四章 空氣/電動輕型載具車實作 30 4.1 電動機車架構介紹 30 4.2 機構設計與改裝 31 4.3 電系與即時控制單元設計 35 第五章 機車底盤動力計量測結果與模型比對 40 5.1 機車底盤動力計與量測架構 40 5.2 穩態測試 42 5.3 行車型態測試 52 5.4 能耗分析 63 第六章 結論與未來工作 65 6.1 結論 65 6.2 未來工作 66 參考文獻 67 符號彙整 70

    [1]京都議定書http://www.tri.org.tw/unfccc/download/kp_c.pdf
    [2]經濟部能源局能源產業溫室氣體減量資訊網http://verity.erl.itri.org.tw/EIGIC/
    [3]J. Wang, J. Pu, C. B. Wong and P. R. Moore, Robust servo motion control of air motor systems,IEEE UKACC International Conference on control, no. 427, 1996, pp.90-95.
    [4]R. B. Varseveld and G. M. Bone, Accurate position control of a pneumatic actuator using on/off solenoid valves, IEEE Asme Transactions on Mechatronics, vol. 2, no. 3, 1997, pp.195-204.
    [5]S.R. Pandian, F. Takemura, Y. Hayakawaand and S.Kawamura, Control performance of an air motor—canair motors replace electric motors?, IEEE International Conference on Robotics & Automation, vol. 1, 1999,pp.518-524.
    [6]M. O. Tokhi, M. A. Miskiry and M. Brisland, Real-time control of air motors using a pneumatic H-bridge, Control Engineering Practice, vol. 9, 2001, pp.449-457.
    [7]R. Marumo and M. O. Tokhi, Neural-Model reference control of an air motor, IEEE AFRICON, 2004, pp.467-472.
    [8]許雲峰,氣動馬達的適應控制,碩士論文,國立台灣大學機械工程系,台北,2006。
    [9]Y. D. Shen and Y. R. Hwang, Dynamic modeling and controller design for air motor, SICE-ICASE International Joint Conference, Busan, Korea, 2006, pp.462-466.
    [10]林柳絮、林憲陽、王宣勝,氣動馬達轉速之強健性控制,中國機械工程學會第二十四屆全國學術研討會論文集,桃園,2007,第CSME1862-1867頁。
    [11]Y. R. Hwang, Y. D. Shen and K. K. Jen, Fuzzy MRAC controller design for vane-type air motor systems, Journal ofMechanical Science and Technology, vol. 22, 2008, pp.497-505.
    [12]黃衍任、黃詩堯,運用MRAC 及模糊法則於氣動馬達FPGA 控制器之研發,先進工程學刊,第四卷,第一期,2009,第63-69頁。
    [13]Y. R. Hwang, Y. T. Shen, M. S. Chen, Dynamic analysis and fuzzy logic control for the vane-type air motor, Journal of Mechanical Science and Technology, vol. 23, 2009, pp.3232-3238.
    [14]F. Takemura, S. R.Pandian, Y. Nagase, H. Mizutani, Y. Hayakawa and S. Kawamura, Control of a hybrid pneumatic/electric motor, IEEE International Conference onIntelligent Robots and Systems, 2000, pp.209-214.
    [15]Y. Zhang and A. Nishi, Low-pressure air motor for wall-climbingrobot actuation,Mechatronics, vol. 13, 2003, pp.377-392.
    [16]K. D. Huang and S. C. Tzeng, Development of a hybridpneumatic-power vehicle, Applied Energy, vol. 80, 2005, pp.47-59.
    [17]K. D. Huang, S. C. Tzeng and W. C. Chang, Energy-saving hybrid vehicle usinga pneumatic-power system, Applied Energy, vol. 81, 2005, pp.1-18.
    [18]K. D. Huang, S. C. Tzeng, W. P. Ma and W. C. Chang, Hybrid pneumatic-power system which recyclesexhaust gas of an internal-combustion engine, Applied Energy, vol. 82, 2005, pp.117-132.
    [19]S. Trajkovic, P. Tunestal and B. Johansson, Introductory study of variable valve actuation for pneumatic hybridization, SAE Paper, 01-0288, 2007.
    [20]Y. T. Shen and Y. R. Hwang, Design and implementation of an air-powered motorcycles, Applied Energy, vol. 86, 2009, pp.1105-1110.
    [21]沈毓達,氣壓馬達系統設計與應用,博士論文,國立中央大學機械工程系,桃園,2010。
    [22]林成勳,複合氣動系統實驗平台建置與研究,碩士論文,國立台北科技大學車輛工程系,台北,2010。
    [23]許克仲,氣動馬達與電動馬達混合動力之開發與研究,碩士論文,國立中央大學機械工程系,桃園,2011。
    [24]陳梓豪,複合氣動系統能量匯流管理之研究,碩士論文,國立台北科技大學車輛工程系,台北,2011。
    [25]洪翊軒、李汯緯、陳建豪、林煜軒、董又銘,空氣/電動混合動力車之設計與實作,第十六屆車輛工程學術研討會,台北,2011。
    [26]S. Y. Huang and Y. R. Hwang, Characteristics measurement and FPGA controller design for an air motor and electric motor hybrid power system, Proceedings ofInternational Conference on Instrumentation, Measurement, Circuits and Systems,Hong Kong, 2011, pp.1-4.
    [27]Y. T. Shen and Y. R. Hwang, Development of a novel pneumatic hybrid engine, World Academy of Science, Engineering and Technology, vol. 65, 2012.
    [28]高雄科技技術學院機械工程系http://www2.kuas.edu.tw/prof/mau/www/complete/index.html.
    [29]GAST,http://www.gastmfg.com/pdf/airmotor/specsht/4AM.pdf.
    [30]張晉嘉、李鴻駿、李汯緯、洪翊軒、陳建安、呂有豐,新型電動巴士與快充系統建模與評估設計,第十七屆車輛工程學術研討會,南投,2012。
    [31]光陽機車,http://www.kymco.com.tw.
    [32]黃達明、游信義、柯雲龍編著,應用力學,台北:台科大,(2011)。
    [33]刁海、崔國起、陳光輝、王陽,摩托車空氣阻力係數的測試,小型內燃機與摩托車,第三十四卷,第二期,2005,第8-10頁。
    [34]汪國禎編著,汽車學II汽車底盤篇,台南:復文,(2010),38-39。

    下載圖示
    QR CODE