研究生: |
林谷容 Lin, Ku-Jung |
---|---|
論文名稱: |
應用於28 GHz相移器與可變增益放大器設計 Design of 28-GHz Phase Shifters and a Variable Gain Amplifier |
指導教授: |
蔡政翰
Tsai, Jen-Han |
學位類別: |
碩士 Master |
系所名稱: |
電機工程學系 Department of Electrical Engineering |
論文出版年: | 2020 |
畢業學年度: | 108 |
語文別: | 中文 |
論文頁數: | 157 |
中文關鍵詞: | 第五代行動通訊 、互補式金屬氧化物半導體 、相位可反向衰減器 、反射式相移器 、開關式相移器 、電流控制架構 、可變增益放大器 |
英文關鍵詞: | fifth generation, CMOS, phase-invertible variable attenuator, reflection-type phase shifter, switch-type phase shifter, current steering, variable gain amplifier |
DOI URL: | http://doi.org/10.6345/NTNU202001568 |
論文種類: | 學術論文 |
相關次數: | 點閱:145 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
[1] 林武璇,“應用於第五代行動通訊之28GHz相移器與升頻混頻器研究”,國立臺灣師範大學電機工程所碩士論文,民國106年。
[2] 蕭璿,“應用於毫米波相位陣列系統之相移器設計”,國立臺灣師範大學電機工程所碩士論文,民國108年。
[3] 林于惠,“應用於5G行動通訊之28GHz與38GHz相移器設計”,國立臺灣師範大學電機工程所碩士論文,民國108年。
[4] J. G. Yang, and K. Yang, “Ka-Band 5-Bit MMIC Phase Shifter Using InGaAs PIN Switching Diodes,” in IEEE Microwave and Wireless Components Letters., vol. 21, no. 3, pp. 151-153, Mar. 2011.
[5] G. Shin et al., "Low Insertion Loss, Compact 4-bit Phase Shifter in 65 nm CMOS for 5G Applications," in IEEE Microwave and Wireless Components Letters, vol. 26, no. 1, pp. 37-39, Jan. 2016.
[6] J. -. Tsai, F. -. Lin and H. Xiao, "Low RMS phase error 28 GHz 5-bit switch type phase shifter for 5G applications," in Electronics Letters, vol. 54, no. 20, pp. 1184-1185, 4 10 2018.
[7] Q. Zheng, Z. Wang, K. Wang, G. Wang, H. Xu, L. Wang, W. Chen, M. Zhou, Zhengliang Huang, and Faxin Yu, “Design and Performance of a Wideband Ka-Band 5-b MMIC Phase Shifter,” IEEE Microwave and Wireless Components Letters., vol. 27, no. 5, pp. 482-484, May. 2017.
[8] M. Wang, F. Ullah, X. Wang, Y. Xiao and Y. Liu, "A 25-31 GHz 6-bit Switch-type Phase Shifter in 0.13um SOI CMOS Process for 5G mmWave Phased Array Communications," 2018 14th IEEE International Conference on Solid-State and Integrated Circuit Technology (ICSICT), Qingdao, 2018, pp. 1-3.
[9] J. Park, S. Kong, S. Jang, H. D. Lee, K. Kim and K. C. Lee, "Design of 6-Bit 28GHz Phase Shifter in 65NM CMOS," 2018 Asia-Pacific Microwave Conference (APMC), Kyoto, 2018, pp. 1513-1515.
[10] N. Mazor, O. Katz, R. Ben-Yishay, D. Liu, A. V. Garcia and D. Elad, "SiGe based Ka-band reflection type phase shifter for integrated phased array transceivers," 2016 IEEE MTT-S International Microwave Symposium (IMS), San Francisco, CA, 2016, pp. 1-4
[11] Y. Lin, C. Hsiao, P. Chi and C. Kuo, "A 39 GHz Reflection-Type Phase Shifter for Reflectarray Antenna Application," 2019 International Symposium on VLSI Design, Automation and Test (VLSI-DAT), Hsinchu, Taiwan, 2019, pp. 1-3.
[12] L.-Y. Huang, Y.-T. Lin, and C.-N. Kuo, “A 38 GHz Low-Loss Reflection-Type Phase Shifter,” 2017 IEEE 17th Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems (SiRF), Phoenix, AZ, Jan. 2017, pp. 54-56.
[13] P. Gu and D. Zhao, "Ka-Band CMOS 360° Reflective-Type Phase Shifter with ±0.2 dB Insertion Loss Variation Using Triple-Resonating Load and Dual-Voltage Control Techniques," Radio Frequency Integrated Circuits Symposium., Philadelphia, PA, 2018, pp. 140-143.
[14] R. Garg and A. S. Natarajan, "A 28-GHz Low-Power Phased-Array Receiver Front-End With 360° RTPS Phase Shift Range," Transactions on Microwave Theory and Techniques., vol. 65, no. 11, pp. 4703-4714, Nov. 2017.
[15] Y. Chang, Z. Ou, H. Alsuraisry, A. Sayed and H. Lu, "A 28-GHz Low-Power Vector-Sum Phase Shifter Using Biphase Modulator and Current Reused Technique," Microwave and Wireless Components Letters, vol. 28, no. 11, pp. 1014-1016, Nov. 2018
[16] J. Pang, R. Kubozoe, Z. Li, M. Kawabuchi and K. Okada, "A 28GHz CMOS Phase Shifter Supporting 11.2Gb/s in 256QAM with an RMS Gain Error of 0.13dB for 5G Mobile Network," European Microwave Conference, Madrid, 2018, pp. 807-810.
[17] Jingjing Xia, Slim Boumaiza, “Digitally Assisted 28 GHz Active Phase Shifter With 0.1 dB/0.5◦ RMS Magnitude/Phase Errors and Enhanced Linearity,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 66, Issue. 6, pp. 914-918, Jun. 2019
[18] Q. Zheng et al., "Design and Performance of a Wideband Ka-Band 5-b MMIC Phase Shifter," in IEEE Microwave and Wireless Components Letters, vol. 27, no. 5, pp. 482-484, May 2017
[19] K. W. Han, H. Cui, X. W. Sun, and J. Zhang, “The design of a 60 GHz low loss hybrid phase shifter with 360 degree phase shift,” 2014 14th International Symposium on Communications and Information Technologies (ISCIT)., Incheon, 2014, pp. 551-554.
[20] B. W. Min and G. M. Rebeiz, “Ka-Band SiGe HBT Low Phase Imbalance Differential 3-Bit Variable Gain LNA,” IEEE Microwave and Wireless Components Letters, vol. 18, no. 4, pp. 272-274, April 2008.
[21] Z. Tsai, J. Kao, K. Lin and H. Wang, "A compact low DC consumption 24-GHz Cascode HEMT VGA," 2009 Asia Pacific Microwave Conference, Singapore, 2009, pp. 1625-1627
[22] P. H. Lo, C. C. Lin, H. C. Kuo and H. R. Chuang, “A Ka-band CMOS Low-phase-variation Variable Gain Amplifier With Good Matching Capacity,” in Proc. 42nd Eur. Microw. Conf., Oct. /Nov. 2012, pp. 858-861.
[23] Z. Jiang et al., “A 33.5–39 GHz 5-bit variable gain LNA with 4 dB NF and low phase shift,” in 2017 IEEE Asia Pacific Microwave Conference (APMC), Nov. 2017, pp. 1200-1202.
[24] Jeng-Han Tsai, Jen-Wei Wang, Chung-Han Wu, “A V-band Variable Gain Amplifier with Low Phase Variation using 90 nm CMOS Technology,” Microwave and Optical Technology Letters, vol. 56, no. 8, pp. 1946-1949, Aug. 2014.
[25] H. C. Yeh, S. Aloui, C. C. Chiong and H. Wang, “A Wide Gain Control Range V-Band CMOS Variable-Gain Amplifier With Built-In Linearizer,” IEEE Transactions on Microwave Theory and Techniques, vol. 61, no. 2, pp. 902-913, Feb. 2013.
[26] Y. Yi, D. Zhao, and X. You, A. Valdes-Garcia, “A Ka-band CMOS digital-controlled phase-invariant variable gain amplifier with 4-bit tuning range and 0.5-dB resolution,” 2018 IEEE Radio Frequency Integrated Circuits Symposium (RFIC), pp. 152-155, 2018.
[27] S. Lee, J. Park and S. Hong, "A Ka-Band Phase-Compensated Variable-Gain CMOS Low-Noise Amplifier," in IEEE Microwave and Wireless Components Letters, vol. 29, no. 2, pp. 131-133, Feb. 2019
[28] M. Elkholy, S. Shakib, J. Dunworth, V. Aparin and K. Entesari, "A Wideband Variable Gain LNA With High OIP3 for 5G Using 40-nm Bulk CMOS," in IEEE Microwave and Wireless Components Letters, vol. 28, no. 1, pp. 64-66, Jan. 2018
[29] C. W. Byeon, S. H. Lee, J. H. Lee and J. H. Son, "A Ka-Band Variable-Gain Amplifier With Low OP1dB Variation for 5G Applications," in IEEE Microwave and Wireless Components Letters, vol. 29, no. 11, pp. 722-724, Nov. 2019
[30] H. V. Le, H. T. Duong, A. T. Huynh, R. J. Evans and E. Skafidas, "A CMOS wideband highly linear variable gain amplifier," 2013 Asia-Pacific Microwave Conference Proceedings (APMC), Seoul, 2013, pp. 694-696
[31] Che-Chung Kuo, Zuo-Min Tsai, Jeng-Han Tsai and Huei Wang, "A 71–76 GHz CMOS variable gain amplifier using current steering technique," 2008 IEEE Radio Frequency Integrated Circuits Symposium, Atlanta, GA, 2008, pp. 609-612
[32] Yun-Chieh Chiang, Wei-Tsung Li, Jeng-Han Tsai and Tian-Wei Huang, "A 60GHz digitally controlled 4-bit phase shifter with 6-ps group delay deviation," 2012 IEEE/MTT-S International Microwave Symposium Digest, Montreal, QC, 2012, pp. 1-3
[33] W. Li, Y. Kuo, Y. Wu, J. Cheng, T. Huang and J. Tsai, "An X-band full-360° reflection type phase shifter with low insertion loss," 2012 42nd European Microwave Conference, Amsterdam, 2012, pp. 1134-1137
[34] W. Li, Y. Chiang, J. Tsai, H. Yang, J. Cheng and T. Huang, "60-GHz 5-bit Phase Shifter With Integrated VGA Phase-Error Compensation," in IEEE Transactions on Microwave Theory and Techniques, vol. 61, no. 3, pp. 1224-1235, March 2013
[35] B. Min and G. M. Rebeiz, "Single-Ended and Differential Ka-Band BiCMOS Phased Array Front-Ends," in IEEE Journal of Solid-State Circuits, vol. 43, no. 10, pp. 2239-2250, Oct. 2008
[36] M. A. Morton, J. P. Comeau, J. D. Cressler, M. Mitchell and J. Papapolymerou, "5 bit, silicon-based, X-band phase shifter using a hybrid pi/t high-pass/low-pass topology," in IET Microwaves, Antennas & Propagation, vol. 2, no. 1, pp. 19-22, February 2008
[37] C. Wang, H. Wu, M. Chiang and C. C. Tzuang, "A 24 GHz CMOS miniaturized phase-invertible variable attenuator incorporating edge-coupled synthetic transmission lines," 2009 IEEE MTT-S International Microwave Symposium Digest, Boston, MA, 2009, pp. 841-844
[38] J. Tsai, Y. Tung and Y. Lin, "A 27–42-GHz Low Phase Error 5-Bit Passive Phase Shifter in 65-nm CMOS Technology," in IEEE Microwave and Wireless Components Letters, vol. 30, no. 9, pp. 900-903, Sept. 2020
[39] Yu-Hsuan Lin and H. Wang, "A low phase and gain error passive phase shifter in 90 nm CMOS for 60 GHz phase array system application," 2016 IEEE MTT-S International Microwave Symposium (IMS), San Francisco, CA, 2016, pp. 1-4
[40] B. Ku and S. Hong, "6-bit CMOS Digital Attenuators With Low Phase Variations for $X$-Band Phased-Array Systems," in IEEE Transactions on Microwave Theory and Techniques, vol. 58, no. 7, pp. 1651-1663, July 2010
[41] Ken Leong Fong, "Dual-band high-linearity variable-gain low-noise amplifiers for wireless applications," 1999 IEEE International Solid-State Circuits Conference. Digest of Technical Papers. ISSCC. First Edition (Cat. No.99CH36278), San Francisco, CA, 1999, pp. 224-225
[42] J. Xiao, I. Mehr and J. Silva-Martinez, "A High Dynamic Range CMOS Variable Gain Amplifier for Mobile DTV Tuner," in IEEE Journal of Solid-State Circuits, vol. 42, no. 2, pp. 292-301, Feb. 2007
[43] S. Kassim and F. Malek, "Microwave FET amplifier stability analysis using Geometrically-Derived Stability Factors," 2010 International Conference on Intelligent and Advanced Systems, Manila, 2010, pp. 1-5
[44] R. V. Garver, "Broad-Band Diode Phase Shifters," in IEEE Transactions on Microwave Theory and Techniques, vol. 20, no. 5, pp. 314-323, May 1972
[45] J. Chen, S. Mou, K. Ma and F. Meng, "A 3–6-GHz Wideband Compact 6-Bit Phase Shifter in 0.5-μm GaAs Technology," in IEEE Microwave and Wireless Components Letters, vol. 30, no. 8, pp. 794-797, Aug. 2020
[46] Zou Pei, Kaixue Ma and Shouxian Mou, "A compact 6-bit phase shifter in 0.35 µm SiGe BiCMOS technology," 2016 International Symposium on Integrated Circuits (ISIC), Singapore, 2016, pp. 1-4