簡易檢索 / 詳目顯示

研究生: 莊翼宇
Yi-Yu Chuang
論文名稱: 一維三元金屬介電質光子晶體溫度效應之研究
THERMAL EXTENSION IN A ONE-DIMENSIONAL TERNARY METAL-DIELECTRIC PHOTONIC CRYSTAL
指導教授: 吳謙讓
Wu, Chien-Jang
學位類別: 博士
Doctor
系所名稱: 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 33
中文關鍵詞: 溫度效應光子晶體金屬介電質光子晶體一維高頻
英文關鍵詞: thermal expasion, photonic crystals, one-dimensional, MDPC, high frequency
論文種類: 學術論文
相關次數: 點閱:178下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 光子晶體是兩個或兩個以上不同折射率的物質光學週期性層所組成,光子晶體的基本特性是存在著一些禁帶,在禁帶中電磁波是被禁止傳遞在整個結構。這個禁帶叫做光子能隙。
    在此篇論文中,我們首先討論光子能隙的拓寬在三元金屬介電質光子晶體,可以得知光子晶體明顯的增寬是因為金屬層的存在。
    在第二部分我們探討溫度對光子能隙所造成的效應,考慮熱膨脹造成厚度變化,不同溫度會使結構厚度變化,因此造成能隙邊緣將會偏移, 監控能帶邊緣偏移的行為將會觀察到溫度造成的影響。在使用光子晶體設計溫度相依的感測器上溫度效應的研究提供一些有用的資訊。
    理論上分析在第二章會提到使用TMM法,第一章是在簡短介紹光子晶體,主要的主題被安插在第三章跟第四章,第五章是結論。

    Photonic crystals (PCs) are optically periodic layered media made of two or more materials with different refractive indices. A basic feature of PCs is that there exist some stop bands within which electromagnetic waves are prohibited to propagate through the whole structure. These stop bands are called the photonic band gaps (PBGs).
    In this thesis, we first investigate the enhancement of PBG in a ternary metal-dielectric photonic crystal (MDPC). It can be seen that the PBG is significantly enlarged due to the presence of the metal layer.
    In the second part, we shall investigate the temperature effect on the PBG. We consider the thickness variation due to the thermal expansion. The band edges will be shifted due to the thickness change in the constituent at different temperature. By monitoring the shifting behavior in the band edges, the effect of temperature can be observed. The study of this effect provides some useful information that is useful in the design of a temperature-dependent sensor using the PCs.
    The theoretical analysis made is based on the transfer matrix method which is given in Chapter 2. Chapter 1 is to give a brief introduction of PCs. Main topics are arranged in Chapters 3 and 4, respectively. The conclusion is in Chapter 5.

    Abstract i Acknowledgement ii Contents iii Chapter 1 Introduction 1-1 Literature Review 1 1-2 Motivations and Applications of PCs 2 1-1 Thesis Overview 3 Chapter 2 Theoretical Methods 2-1 Transfer Matrix Method (TMM) 4 2-2 Dynamical Matrix of a Medium ----A Single-Boundary Problem 4 2-3 A Single Slab---Two-Boundary Problem 7 2-4 Matrix Formulation for Multilayer System 10 2-5 Transmittance and reflectance 12 2-6 Linear Thermal Expansion Coefficient For A Solid 14 Chapter 3 Effect of Metal Thickness at High Frequency 3-1 Introduction 15 3-2 Basic equations 16 3-3 Numerical results and discussion 17 3-4 Conclusion 21 Chapter 4 Thermal Effect on Bandgap 4-1 Introduction 23 4-2 Basic equations 23 4-3 Numerical results and discussion 25 4-4 Conclusion 29 Chapter 5 Conclusions 30 References 31

    [1] J. W. Strutt, Lord Rayleigh, “On the maintenance of vibrations by forces of double frequency, and on the propagation of waves through a medium endowed with a periodic structure,” Phil. Mag., S.5, Vol. 24, 145-159, 1887.
    [2] E. Yablonovitch, “Inhibited Spontaneous Emission in Solid-State Physics and Electronics,” Phys. Rev. Lett. Vol. 58, 2059-2062, 1987.
    [3] S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. Vol. 58, 2486-2488, 1987.
    [4] J. D. Jounnaopoulos, R.D. Meade and J. N. Winn, Photonic Crystals-Molding the Flow of Light, 1995, http://ab-initio.mit.edu/book/.
    [5] Pochi Yeh, Optical Waves in Layered Media, John Wiley & Sons, Singapore, 1991.
    [6] M. Born and E. Wolf, Principle of Optics, Cambridge, London, 1999.
    [7] Paul A., Tipler; Gene Mosca. Physics for Scientists and Engineer, New York, NY: Worth Publishers, 2008.
    [8] D. N. Chigrin, “Omnidirectional Bragg mirror,” in Electromagnetic Waves Propagation in Photonic Crystals with Incomplete Photonic Band Gap, Thesis (Univ. Wuppertal, 2003), pp. 62–75.
    [9] M. Deopura, C. K. Ullal, B. Temelkuran, and Y. Fink, “Dielectric omnidirectional visible reflector,” Opt. Lett. 26, 1197–1199 (2001).
    [10] J. N. Winn, Y. Fink, S. Fan, and J. D. Joannopoulos, “Omnidirectional reflection from a one-dimensional photonic crystal,” Opt. Lett. 23, 1573–1575 (1998).
    [11] D. N. Chigrin, A. V. Lavrinenko, D. A. Yarotsky, and S. V. Gaponenko, “Observation of total omnidirectional reflection from a one-dimensional dielectric lattice,” Appl. Phys. A 68, 25–28 (1999).
    [12] S. K. Singh, K. B. Thapa, J. P. Pandey, and S. P. Ojha, “Si/SiO2 one-dimensional omnidirectional photonic crystals,” in Proceedings of International Conference on Optics and Optoelectronics (IRDE Dehradun, 2005), PP–PBS–6.
    [13] X. Wang, X. Hu, Y. Li, W. Jia, C. Xu, X. Liu, and J. Zi, “Enlargement of omni-directional total reflection frequency range in one-dimensional photonic crystals by using photonic heterostructures,” Appl. Phys. Lett. 80, 4291–4293 (2002).
    [14] E. Xifre-Perez, L. F. Marsal, J. Pallares, and J. Ferre Borrull, “Porous silicon mirrors with enlarged omnidirectional band gap,” J. Appl. Phys. 97, 064503–1–064503–5 (2005).
    [15] Marquez-Islas, R., B. Flores-Desirena, and F. Perez-Rodriguez, “Exciton polaritons in one-dimensional metal-semiconductor photonic crystal," J. Nanosci. Nanotechnol., Vol. 8, 6584{6588, 2008.
    [16] Drude, Paul (1900). "Zur Elektronentheorie der metalle". Annalen der Physik] 306 (3): 566. doi:10.1002/andp.19003060312.
    [17] Kai, T., C. W. Wei, Y. G. Hui, and L. Z. Quan, “Study on temperature property of band structures in one-dimensional photonic crystals," Optoelectronics Letters, Vol. 3, 0444{0447, 2007.

    無法下載圖示 本全文未授權公開
    QR CODE