簡易檢索 / 詳目顯示

研究生: 鄭僑人
Jheng,Ciao-Ren
論文名稱: 透明導電膜氧化鋅摻雜鋁之成長與應用於矽薄膜太陽能電池之研究
Transparent conductive ZnO:Al films growth and application on silicon thin-film solar cells
指導教授: 王立民
Wang, Li-Min
李亞儒
Lee, Ya-Ju
學位類別: 碩士
Master
系所名稱: 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 44
中文關鍵詞: 共濺鍍AZO太陽能電池
論文種類: 學術論文
相關次數: 點閱:299下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文是利用射頻磁控共濺鍍(Co-Sputtering)系統製備p-type矽薄膜,利用不同功率的鋁靶和非晶矽靶同時濺鍍於玻璃基板上達到摻雜的目的之後進行熱退火,系統地分析及量測p-type矽薄膜之電性,進而探討應用於n-type silicon wafer 太陽能電池元件後的光學特性與電性分析。
    並研究AZO(Al 1%)靶材濺鍍於玻璃基板上,在不同的退火溫度其薄膜的電性分析、光學特性,得到一ρ=8.5 x 10-4Ω-cm、μ=24 cm2/V•s、 n=3.1x1020 1/cm3、可見光部分穿透率 84% 的AZO薄膜,最後製備於太陽能電池元件之可行性,最終在Al/p-Si/n-Si wafer 結構上獲得一開路電壓為0.59V,光電流為0.07 mA/cm2 ,轉換效率為0.02% 的太陽能光伏元件。

    目 錄 I 表目錄 IV 圖目錄 V 致 謝 VII 摘 要 VIII 第一章 序論 1 1-1 前言 1 1-2 研究動機與目的 2 第二章 實驗原理 4 2-1 ZNO 透明導電膜之發展及物理性質 4 2-2鋁金屬誘發矽結晶發展及原理 5 2-3濺鍍原理 6 2-4 霍爾效應與四點探針量測 9 2-5 柏斯坦—摩斯(BURSTEIN-MOSS)效應 12 2-6 X光繞射分析原理(X-RAY DIFFRACTION, XRD) 13 2-7 光激發螢光光譜原理(PHOTOLUMINESCENCE, PL) 15 2-8熱退火原理(THERMAL ANNEALING) 15 2-9 太陽能電池(SOLAR CELLS)原理 17 第三章 實驗步驟與設備 23 3-1 AZO靶材製作 23 3-2 結構製作流程 23 3-3濺鍍系統 24 3-4 AZO薄膜和矽摻雜鋁薄膜熱退火 26 3-5元件製作 27 3-6穿透和吸收率量測 28 3-7元件光電流量測 30 第四章 結果與討論 32 4-1 AZO光電特性分析 32 4-2矽摻雜鋁薄膜電性分析 37 4-3元件光電性分析 38 4-4 結論 40 參考文獻 42

    [1] Wagner, R. S., and W. C. Ellis. "Vapor‐liquid‐solid mechanism of single crystal growth." Applied Physics Letters 4.5 (1964): 89-90.
    [2] Macdonald, Daniel, and L. J. Geerligs. "Recombination activity of interstitial iron and other transition metal point defects in p- and n-type crystalline silicon." Applied Physics Letters 85.18 (2004): 4061-4063.
    [3] Glunz, S. W., et al. "Minority carrier lifetime degradation in boron-doped Czochralski silicon." Journal of Applied Physics 90.5 (2001): 2397-2404.
    [4] J. Schmidt, K. Bothe, R. Bock,N-type Silicon– the better material choice for industrial high-efficiency solar
    cells, 22nd European Photovoltaic Solar Energy Conference, 3-7 September 2007, Milan, Italy.
    [5] K. Bothe, J. Schmidt, and R. Hezel, Proc. 29th IEEE PVSC, New Orleans, USA (2002), p. 194.
    [6] Hamad, Omima, et al. "Effect of thermal treatment in oxygen, nitrogen, and air atmospheres on the electrical transport properties of zinc oxide thin films." Thin Solid Films 489.1 (2005): 303-309.
    [7] Minami, Tadatsugu, Hidehito Nanto, and Shinzo Takata. "Highly conductive and transparent aluminum doped zinc oxide thin films prepared by RF magnetron sputtering." Jpn. J. Appl. Phys 23.5 (1984): L280-L282.
    [8] Barton, Paul B., and Priestley Toulmin. "The electrum-tarnish method for the determination of the fugacity of sulfur in laboratory sulfide systems." Geochimica et Cosmochimica Acta 28.5 (1964): 619-640.
    [9] OBINATA, Ichiji, and Noboru KOMATSU. "Method of Refining Silicon by Alloying." (1957).
    [10] Herd, S. R., P. Chaudhari, and M_H Brodsky. "Metal contact induced crystallization in films of amorphous silicon and germanium." Journal of Non-Crystalline Solids 7.4 (1972): 309-327.
    [11] M. S. Haque, H. A. Naseem and W. D. Brown, “Interaction of Aluminum with
    Hydrogenated Amorphous Silicon at Low Temperatures ”,J. Appl. Phys., Vol. 75,
    (1994): 3928-3935.
    [12] Nast, Oliver, et al. "Polycrystalline silicon thin films on glass by aluminum-induced crystallization." Electron Devices, IEEE Transactions on 46.10 (1999): 2062-2068.
    [13] Peng, Cheng Chang, et al. "Effects of annealing conditions and thickness ratio of Si/Al films on the Hall carrier mobility, Al carrier concentration, and nanovoids formed in the metal-induced Si crystallization of Si/Al/Si/SiO2/glass specimens." Surface and Coatings Technology 205.19 (2011): 4672-4682.
    [14] Tauc, Jan, ed. Amorphous and liquid semiconductors. New York: Plenum Press, 1974.
    [15] Davis, E. A., and NFf Mott. "Conduction in non-crystalline systems V. Conductivity, optical absorption and photoconductivity in amorphous semiconductors." Philosophical Magazine 22.179 (1970): 0903-0922.
    [16] Tan, S. T., et al. "Properties of polycrystalline ZnO thin films by metal organic chemical vapor deposition." Journal of crystal growth 281.2 (2005): 571-576.
    [17] Ohyama, Masashi, Hiromitsu Kozuka, and Toshinobu Yoko. "Sol‐Gel Preparation of Transparent and Conductive Aluminum‐Doped Zinc Oxide Films with Highly Preferential Crystal Orientation." Journal of the American Ceramic Society 81.6 (1998): 1622-1632.
    [18] Kim, H., et al. "Electrical, optical, and structural properties of indium–tin–oxide thin films for organic light-emitting devices." Journal of Applied Physics 86.11 (1999): 6451-6461.
    [19] Han, Min-Yung, and Jwo-Huei Jou. "Determination of the mechanical properties of rf-magnetron-sputtered zinc oxide thin films on substrates." Thin Solid Films 260.1 (1995): 58-64.

    下載圖示
    QR CODE