簡易檢索 / 詳目顯示

研究生: 王傑仕
Jie-Shih Wang
論文名稱: 表面增強拉曼光譜技術在反恐物質快速篩選上的應用
Application of surface-enhanced Raman Spectroscopy (SERS) on rapid screening of anti-terrorism compounds
指導教授: 林震煌
Lin, Cheng-Huang
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 110
中文關鍵詞: 3-硝基甲苯2,6-呲啶二甲酸表面增強拉曼奈米銀炭疽桿菌
英文關鍵詞: 2,4,6-trinitrotoluene, dipicolinic acid, TNT, DPA, SERS, silver colloid
論文種類: 學術論文
相關次數: 點閱:212下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 研究以表面增強拉曼光譜法 (SERS),成功的發展了碳疽桿菌主成分DPA (dipicolinic acid) 及火炸藥主分TNT (2,4,6-trinitrotoluene) 之快速篩選方式。一般未添加奈米銀的情況下,難以觀測到DPA或TNT的拉曼光譜。添加奈米銀雖有助於增加拉曼散射的強度,但是以傳統方式配製的奈米銀,經常在過程當中加入氯化鈉等含氯離子的鹽類作為聚合劑。這類的聚合劑對DPA的拉曼散射強度不但沒有幫助,反而會有抑制的現象。本實驗開發三種不同還原方式,包括檸檬酸鈉還原法、鹽酸羥胺還原法與硼氫化鈉還原法,配製出適合吸附DPA與TNT的具特殊性質奈米銀。尤其以檸檬酸鈉還原法配製的奈米銀,搭配硫酸鈉或是硼酸鈉對增強DPA的拉曼散射效果最好。其中波數1010 cm-1的振動峰(symmetric ring breathing mode),具有明顯特徵性,可供定性與定量分析之用。此等奈米銀溶液呈黃綠色,粒徑分布落在30 ~ 80 nm,UV吸收最大值為440 nm,半高寬為130 nm,對DPA的偵測極限約為100 ppm。本實驗發現,當添加硫酸鈉作為聚合劑時,還能更加提高DPA的拉曼散射強度。這是因為硫酸鈉會破壞奈米銀的電雙層結構,使得大量的DPA能吸附在奈米銀的表面上。在這樣的情況下,DPA的偵測極限甚至能達到0.5 ppm。為了瞭解DPA與奈米銀的吸附方式,本研究以理論計算結果與實驗值進行比對。結果發現C-H out-of-plane 的訊號並沒有增強,但是844 cm-1(C-COO bend)則有明顯增強。因此,推測DPA是以羧基接觸奈米銀表面,使DPA分子垂直吸附到奈米銀顆粒上。此外,本研究也發現檸檬酸鈉還原法配製的奈米銀,對於TNT的拉曼散射有明顯的增強效果。TNT的偵測極限可達到10 µgL-1。在特徵譜峰上,931 cm-1、952 cm-1 (C-H (ring ) out of plane bend vibrational mode) 與1372 cm-1 (NO2 symmetric, C-N stretching mode)的訊號,更有明顯被增強。由被增強的訊號位置,本研究推論TNT是以苯環平躺在奈米銀表面的方式吸附。

    In this study, a rapid screening method bases on surface-enhanced Raman Spectroscopy (SERS) is successfully developed to detect TNT (2,4,6-trinitrotoluene) and DPA (dipicolinic acid), which is the main component of explosives and the excellent marker compound in Bacillus anthracis (anthrax).
    It is very difficult to obtain the Raman signals of DPA and TNT without adding nano-silver in the sample. Although the Raman scattering intensity can be improved by adding nano-silver made by traditional method to the sample, aggregation reagent like sodium chloride is always added to enhance the SERS signal, too. It has been found that when sodium chloride is treated as aggregation reagent, the SERS signal of DPA would be suppressed. In this research, three different nano-silver colloids are made by three different methods, which are named sodium citrate method, hydroxylamine method and borohydride method, respectively. The nano-silver colloids synthesized by different reductants have different particle radius and surface charge characters, and the colloid reduced by sodium citrate is the best colloid to enhance the SERS signal of DPA and TNT. When this colloid is added to DPA, the signal at 1010cm-1 (symmetric ring breathing mode) is obvious characteristic, then DPA can be quantitatively and qualitatively analyzed by monitoring this signal.
    The colloid reduced by sodium citrate has a yellow-green looking, and the particle size is from 30 to 80 nm, and the FWHM is 130 nm. When mixing the colloid with DPA, the detection limit is about 100 ppm. In this research finds that when sodium sulfate is treated as aggregation reagent, the SERS signals of DPA can be enhanced even more. This is because the double layer of nano-silver will be destroyed by the sodium sulfate , making a large number of DPA can be effectively adsorbed on the surface of nano-silver. Under such circumstances, the detection limit of DPA can down to 0.5 ppm. To understand how DPA adsorbs to the nano-silver, herein compared the results of the assignments of Raman vibrational mode to the SERS peaks. The results showed that the signal of C-H out-of-plane vibrational mode was not enhanced, but the signal at 844 cm-1(C-COO bend) was enhanced obviously. Confirming that the adsorption of DPA molecule occurs perpendicular to the surface of the silver particle.
    Besides, this study also found that the colloid reduced by sodium citrate has great enhance ability to the SERS signal of TNT, and the detection limit is 10µgL-1. Comparing the SERS peaks of TNT with the theoretic assignments, the signals at 931 cm-1、952 cm-1 (C-H (ring ) out of plane bend vibrational mode) and at 1372 cm-1 (NO2 symmetric, C-N stretching mode) are enhanced obviously. The relatively strong enhancement of these modes suggest that TNT molecules on nano-silver particle are oriented parallel to the surface of the particle.

    中文摘要..………………………………………………………………………… I 英文摘要………………………………………………………………………… III 目錄………………………………………………………………………………… V 圖目錄…………………………………………………………………………… VII 表目錄…………………………………………………………………………… IX 第一章 緒論……………………………………………………………………… 1 1-1 研究目的………………………………………………………………… 1 1-2 分析物簡介……………………………………………………………… 3 1-2-1 TNT(2,4,6-Trinitrotoluene)………………………… 3 1-2-2 DPA(dipicolinic acid)...……………………………… 6 第二章 分析方法及原理………………………………………………………… 8 2-1 拉曼散射………………………………………………………………… 8 2-1-1 拉曼散射歷史簡介…………………………………………… 8 2-1-2 拉曼散射原理介紹…………………………………………… 10 2-2 表面增強拉曼…………………………………………………………… 10 2-2-1 表面增強拉曼歷史簡介……………………………………… 15 2-2-2 表面增強拉曼原理介紹……………………………………… 15 2-3 奈米粒子的特性與配製………………………………………………… 20 2-3-1 奈米粒子的特性……………………………………………… 20 2-3-2 奈米銀膠體溶液的配製……………………………………… 22 2-3-2-1 奈米銀還原法分類與玻璃容器清洗…………… 22 2-3-2-2 鹽酸羥胺還原法………………………………… 23 2-3-2-3 檸檬酸鈉還原法………………………………… 24 2-3-2-4 硼氫化鈉還原法………………………………… 25 2-4 聚合劑對於SERS訊號的影響………………………………………… 26 第三章 儀器和藥品…………………………………………………………… 28 3-1 自組式拉曼光譜分析儀………………………………………………… 28 3-2 儀器及周邊設備列表…………………………………………………… 32 3-3 使用藥品列表…………………………………………………………… 36 第四章 研究過程與結果討論………………………………………………… 38 4-1 三種奈米銀的性質比較………………………………………………… 38 4-1-1 奈米銀UV-Vis、SEM、pH值結果討論…………………… 38 4-1-2 奈米銀加入不同鹽類的討論………………………………… 43 4-2 不同奈米銀對於TNT的SERS光譜比較.…………………………………48 4-2-1 實驗條件最佳化……………………………………………… 48 4-2-1-1 藥品準備………………………………………… 48 4-2-1-2 未加聚合劑的SERS光譜……………………… 50 4-2-1-3 改變TNT pH值的影響……………………… 54 4-2-2 TNT SERS的偵測極限……………………………………… 56 4-3 不同奈米銀對於DPA 的SERS光譜比較…………………………………58 4-3-1 實驗條件的最佳化.………………………………………… 58 4-3-1-1 藥品準備……………………………………… 58 4-3-1-2 不同的奈米銀加上不同聚合劑的SERS差異… 59 4-3-2 DPA SERS的偵測極限.……………………………………… 65 第五章 結論…………………………………………………………………… 71 參考文獻………………………………………………………………………… 73 附錄I……………………………………………………………………………… 80附錄II…………………………………………………………………………… 83

    [1] Brandt, E. S.; Cotton, T. M. Surface-Enhanced Raman Scattering, 2nd ed.; Rossiter, B. W., Baetzold, R. C., Eds.; John Wiley & Sons: New York, 1993; Vol. Ixb, pp 633-718Shihabi, Z. K. J. Chromatogr. A 2000, 902, 107.
    [2] Campion, A.; Kambhampati, P. Chem. Soc. Rev. 1998, 27, 241.
    [3] Chang, R. K.; Furtak. T. E. Surface Enhanced Raman Scattering; Plenum Press: New York, 1982.
    [4] He, L., Natan, M. J., Keating, C. D. Anal. Chem. 2000, 72, 5348.
    [5] Dijkstra, R. J., Gerssen, A., Efremov, E. V., Ariese, F., Brinkman, U. A. T., Gooijer, C. Anal. Chim. Acta. 2004, 508, 127.
    [6] Seifar, R. M., Dijkstra, R. J., Gerssen, A., Ariese, F., Brinkman, U. A. T., Gooijer, C. J. Sep. Sci. 2002, 25, 814.
    [7] Nirode, W. F.; Devault, G. L., Sepaniak, M. J. Anal. Chem. 2000, 72, 1866.
    [8] Chen, H. l., WHAMPOA- An Interdisciplinary, 2007, 53, 39-46.
    [9] A. W. Czarnik, Nature, 1998, 394, 417.
    [10] W. G. Murrell. In The Bacteria Spore, eds. G W. Goul and A. Hurst, Academic Press, London, 1969, ch. 7.
    [11] Richard L. McCreery. Raman Spectroscopy for chemical analysis, New York: Wiley Interscience. 2000.
    [12] H. Paulus, Anal biochem., 1981, 114, 407.
    [13] J.P. Dworzanski, W. H. McClennen, P. A. Cole, S. N. Thornton, H. L. C. Muezelaar, N. S. Arnold and A. P. Snyder, Field Anal. Chem . Technol., 1997, 1, 295.
    [14] D. Helm and D. Naumann, FEMS Microbiol. Lett., 1995, 126, 75.
    [15] M. B. Beverly, K. J. Voorhees, R. B. Cody, J.A. Laramee and E. Philips, Proceedings of the 47th ASMS Conference on Mass Spectrometry and Allied Topics, Dallas, TX, June 13, 1999.
    [16] Rosenm D. L.; Sharpless, C.; Mcgown, L. B. Anal Chem. 1997, 69, 1082.
    [17] Katon, J. Vib. Spectrosc. 1994, 7, 201.
    [18] Woodruffm W. H.; Spiro, T.G.; Gilvarg, C. Biochem. Biophy. Res. Commun, 1974, 58, 197.
    [19] Petrov, G. I.; Yakovlev, V. V.; Sokolov A. v.; Scully, M. O. Opt. Express 2005, 13, 9537.
    [20] K. Hakansson, R. V. Coorey, R. A. Zubarev, V. L. Talrose and P. HaKansson, J. Mass Spectrom., 2000, 35, 337.
    [21] V. P. Anferov, G. V. Mozjoukhine and R. Fisher, Rev. Sci. Instrum. ,2000, 71, 1656.
    [22] R. D. Luggar, M. J. Farquharson, J. A. Horrocks and R. J. Lacey, J. X-ray Spectrom., 1998, 27, 87.
    [23] A. M. Rouhi, Chem. Eng. News, 1997, 75, 14.
    [24] M. Krausa and K. Schorb, J. Electroanal. Chem., 1999, 461, 10.
    [25] E. Wallis, T. M. Griffin, N. Popkie, Jr., M. A. Eagan, R. F. MacAtee, D. Vrazel and J. McKinly, Proc. SPIE-Int. Soc. Opt. Eng., 2005, 5795, 54.
    [26] K. Kneipp, Yang Wang, Ramachandra, R. Dasari, Michael S. Feld, Brian D. Gilbert, James Janni, Jeffrey I. Steinfeld, Spectrochimica Acta Part A, 51, 1995, 2171.
    [27] Sarah J., Toal and William C. Trogler, J. Mater.Chem., 2006, 16, 2871.
    [28] James M. Sylvia, James A. Janni, J. D. Klein, and Kevin M. Spencer, Anal. Chem. 2000, 72, 5834.
    [29] David D. Evanoff, Jr., John Heckel, Thomas P. Caldwell, Kenneth A. Chrisrensen, and George Chumanov, J. AM. CHEM. SOC. 2006, 128, 12618.
    [30] Daniels, J. K.; Caldwell, T. P.; Christensen, K. A. Chumanov, G. Anal Chem. 2006, 78, 1724.
    [31] Kneipp, K.; Kneipp, H., Itzkan I., Dasari, R. R.; Fekd, M. S. Chem. Rev. 1999, 99, 2957.
    [32] Lili He, Yang Liu, Mengshi Lin, Azlin Mustapha, Yifen Wang, Sens. & Instrumen. Food Qual., 2008, 2:247.
    [33] B. A. Rasco, G. E. Bledsoe, Bioterrorism and Foods Safety (CRC Press, Boca Raton, FL, 2005.
    [34] J. D. Guingab, B. Lauly, B. W. Smith, N. Omenetto, J. D. Winefordner, Talanta, 74, 2007, 271.
    [35] Brandt, E. S.; Cotton, T. M. In Investigations of Surfaces and Interfaces-Part B 2nd ed., Rossiter, B. W., Baetzold, R. C., Eds,; John Wiley & Sons: New York, 1993; Vol. IX B, p667.
    [36] Lian Gao, Lian Gao Lian Gao Jing Sun Jing Sun Yang-qiao Liu Yangqiao Liu, Jing Sun, Yang-qiao Liu; 奈米粉體的分散及表面改性; 五南圖書出版股份有限公司, 2005
    [37] J.A. Creighton, C. G. Blatchford and M. G. Albecht , J. A. Soc., Faraday Trans., 2, 1980, 75, 790.
    [38] J. A. Creighton, in Surface Enhanced Raman Spectroscopy, ed. R. K. Chang and T. E. Furtak, Plenum, New York, 1982, pp.315.
    [39] K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari and M. S. Feld, Chem. Rev., 1999, 99, 2957.
    [40] Lecomte, S.; Matejka, P.; Baron, M. H. Langmuir 1998, 14, 4373.
    [41] Faulds, K.; Littleford, R. E.; Graham, D.; Dent, G.; Smith, W. E. Anal. Chem. 2004, 76, 592.
    [42] Richard L. McCreery. Raman Spectroscopy for chemical analysis, New York: Wiley Interscience. 2000.
    [43] Nie, Shuming; R. Emony, Steven Science 1997, 275.
    [44] Kneipp, Katrin; Wang, Y.; Kneipp, Harald; Perelman, Lev T.; Itzkan, Irving, R. Dasari, R. Dasari, Ramachandra; S. Feld, Michael Phys. Rev. Letters. 1997, 78, 9.
    [45] Maruyama, Yoshihiro; Ishikawa, Mitauru; Futamata, Masayuki Anal. Sci. 2001, 17.
    [46] Dou, X.; Yamaguchi, Y.; Yammamoto, H.; Doi, S.; Ozaki, Y. Vibrational Spectroscopy 1996, 13, 83.
    [47] W. McMurdy III; J.Berger, Andrew Appl. Spectrosc. 2003, 57, 5.
    [48] Janina Kneipp, Harald Kneipp, Margaret McLaughlin, Dennis Brown, and Katrin Kneipp. Nano Lett., Vol. 6, No. 10, 2006.
    [49] Kartin Kneipp et al, Surface-enhanced Raman scattering and biophysics, J. Phys: Condens. Matter. 14, 2002, R597-R264 Pll.
    [50] High Resolution UV Echelle Spectroscopy for Environmental Sensing, Proc. SPIE, 2002, Vol. 5269, 34
    [51] Surface-Enhanced Raman for Monitoring Toxins in Water, Proc. SPIE,2004, Vol. 5268, 340.
    [52] Janina Kneipp, Harald Kneipp, Burghardt Wittig, and Katrin Kneipp; Nano Lett., Vol. 7, No. 9, 2007
    [53] Vo-Dinh, T. Trends in Analytical Chemical 1998, 17, 557.
    [54] Anthony, T. Tu. Raman Spectroscopy in Biology Principles and Applicarions John Wiley & Sons, Inc.
    [55] 李冠卿,物理雙週刊,1983,第五卷,第四期,185.
    [56] Nie, S. M.;Emory, S. R. Science 1997, 275, 1102.
    [57] He, L., Natan, M. J., Keating, C. D. Anal. Chem. 2000, 72, 5348.
    [58] Nirode, W. F.; Devault, G. L., Sepaniak, M. J. Anal. Chem. 2000, 72, 1866.
    [59] Kneipp, Kartrin Single Mol. 2001, 4, 291.
    [60] Futamata, Masayuki; Maruyama, Yoshihiro; Ishikawa, Mitsuru Vibrational Spectroscopy 2004, 35, 121.
    [61] Otto, Andreas J. Raman Spectrosc. 2005, 36, 497.
    [62] J. Turkevich, G. Kim. ”Palladium: Preparation and Catalytic Properties of Particles of Uniform Size”, Science, 169, 1970, pp.873.
    [63] C. N. R. Rao, G. U. Kulkarni, P. J Thomas, P. P. Edward, Chem. Eur. J. 2002, 8, 29.
    [64] M. A. El-Sayed, Acc. Chem. Res. 2001, 34, 257
    [65] Creighton J. A., Blatchford C. G. , Albight M. G., J. Chem. Soc., Faraday Trans. 1979; 79 75: 790.
    [66] Wang C. Y., Liu C. Y., Zhen X., Shen T. Colloids Surf. A 1998; 131: 271.
    [67] Henglein A. J. Phys. Chem. 1993; 97: 5457.
    [68] Smith W. E. Methods Enzymol. 1993; 226:482.
    [69] Laserna J. J. Anal Chim. Acta 1993; 283: 607
    [70] N. Leopold, B. Lendl, Hydroxylamine Reduced Silver Colloid: A new substrate for surface enhanced Raman Scattering.
    [71] Nicolae Leopold, Bernhard Lendl, J.phys. Chem. B 2003,107, 5723.
    [72] L. Rivas, S. Sanchez-Cortes, J. V. Garcia-Ramos, G. Morcillo, Langmuir 2000, 16, 9722.
    [73] P. C. Lee, D. Meisel, J. Phys. Chem. 1982, 86, 3391.
    [74] John Clarkson, W. Ewen Smith, David N. Batchelder, D. Alastrair Smith, Alison M. Coats. J. Molecular Structure , 648, 2003, 203.
    [75] Jackeline I. Jerez-Rozo, Oliva M. Primera-Pedrozo, Marcos A. Barreto-Cabán, and Samuel P. Hernández-Rivera; IEEE SENSORS JOURNAL, VOL. 8, NO. 6, JUNE 2008.
    [76] A. Otto, A. Bruckbauer and Y. X. Chen, J. Mol. Struct., 2003, 661, 501.
    [77] E. J. Liang and W. Kiefer, J. Raman Spectrosc., 1996, 27, 879.
    [78] Steven E. J. Bell,* Joseph N. Mackle and Narayana M. S. Sirimuthu; Analyst, 2005, 130, 545.
    [79] A.A. Kolomenskii, H.A. Schuessler; Spectrochimica Acta Part A 61, 2005, 647.
    [80] Steven E. J. Bell* and Narayana M. S. Sirimuthu; J. Phys. Chem. A 2005, 109, 7405.

    無法下載圖示 本全文未授權公開
    QR CODE