簡易檢索 / 詳目顯示

研究生: 鍾順宏
論文名稱: 磷化鎵孿晶奈米線之合成,鑑定與分析
Synthesis,Characterization and Analysis of Gallium Phosphide Twin-Crystal Nanowires
指導教授: 陳家俊
Chen, Chia-Chun
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2002
畢業學年度: 90
語文別: 中文
論文頁數: 49
中文關鍵詞: 磷化鎵孿晶
英文關鍵詞: gallium phophide, twin-crystal
論文種類: 學術論文
相關次數: 點閱:317下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要
    在三五族奈米線的製程上,本實驗使用金和鉑來作為成長氮化鎵及磷化鎵奈米線所需的催化劑。相對於有機金屬前趨物,使用金和鉑催化生成的奈米線具有較佳的尺寸分佈及外觀,尤其是以鉑催化生成的磷化鎵奈米線,其直徑分佈相當均一,幾乎都介於80-90奈米之間。
    另外,我們也對磷化鎵孿晶奈米線的結構及光學作深入的研究。結構分析方面,從高解析穿透式電子顯微鏡及電子繞射圖譜加以分析,此磷化鎵奈米線是由連續的面心立方堆積之孿晶結構所組成。在光致放光光譜的分析方面,一般的磷化鎵奈米線在大約2.43電子伏特處有一個較寬的訊號;氧化鋅奈米柱則在3.29電子伏特附近有一個明顯訊號。但是有趣的是磷化鎵孿晶奈米線的光致發光光譜,在大約1.7電子伏特附近出現了一個訊號,此訊號是一般的磷化鎵奈米線及氧化鋅奈米柱的光致放光光譜中所未見的。因此,關於磷化鎵孿晶奈米線的物理性質或應用,將有許多更深入的研究及探討。

    Abstract
    In the synthesis of III-V group nanowires, we used gold and platinum to be catalysts for the growth of gallium nitride (GaN) and gallium phosphide (GaP) nanowires. Compared with metal organic precursors, gold and platinum can be used as catalysts to produce GaN and GaP nanowires with better size distribution and morphologies. In particular, the GaP nanowires prepared by using platinum as a catalyst had uniform diameters in the range of 80-90 nm.
    We paid attention to the structural and optical studies of GaP nanowires with twin-crystal structure. Structural characterization of the GaP nanowires indicated that the nanowires were continuous twin-crystal structure of face-center-cubic (fcc) confirmed by high-resolution transmission electron microscopy (HRTEM) and electron diffraction pattern. There exists a broad peak centered on 2.43eV in the PL spectra of common GaP nanowires and a sharp peak at 3.29eV in the PL spectra of ZnO arrays. It is interesting to note that there exists an extra peak at 1.7 eV in the PL spectra of GaP twin-crystal nanowires grown on ZnO arrays taken at low temperature. The GaP nanowires with a special structure can be investigated for further physical properties and potential applications.

    目錄 目錄……………………………………………………………………Ⅰ 中文摘要………………………………………………………………Ⅲ 英文摘要………………………………………………………………Ⅳ 第一章 緒論……………………………………………………………1 一、 奈米科技 …………………………………………………1 二、 簡介奈米材料………………………………………………2 三、 量子限量化效應……………………………………………2 四、 一維奈米結構的特性………………………………………3 五、 直遷能隙與非直遷能隙……………………………………4 六、 一維奈米材料的合成方式…………………………………5 第二章 Ⅲ-V族奈米線合成方式的改良………………………………10 一、 研究動機…………………………………………………10 二、 實驗設計…………………………………………………10 三、 氮化鎵及磷化鎵奈米線的成長…………………………11 (一) 載片的處理…………………………………………11 (二) 反應物的處理………………………………………11 (三) 實驗流程與裝置……………………………………12 (四) 結果與討論…………………………………………14 第三章 磷化鎵孿晶奈米線之合成……………………………………25 一、 研究動機…………………………………………………25 二、 實驗設計…………………………………………………26 三、 成長高度排列的氧化鋅奈米柱…………………………26 (一) 載片之處理…………………………………………26 (二) 反應物之處理………………………………………27 (三) 實驗流程與裝置……………………………………27 (四) 結果與分析…………………………………………28 四、 在氧化鋅上成長磷化鎵奈米線…………………………31 (一) 載片之處理…………………………………………31 (二) 反應物之處理………………………………………31 (三) 實驗流程與裝置……………………………………31 (四) 結果與分析…………………………………………33 第四章 未來展望……………………………………………………43 參考文獻………………………………………………………………44 實驗藥品………………………………………………………………48 實驗儀器………………………………………………………………49

    參考文獻
    (1)S. Iijima. Nature 1991, 354,56
    (2)C. Journet, W.K. Maser, P. Bernier, A. Loiseau, M. Lamyde la Chappelle, S. Lefrant, P. Deniard, R. Lee, J.E.Fischer Nature 1997,388,756-758.
    (3)A. Thess, R. Lee, P. Nikolaev, P. Dai, P. Petit, J. Robert,C. Xu, Y.H. Lee, S.G. Kim, A.G. Rinzler, D.T. Colbert,G.E. Scuseria, D. Tomanek, J.E. Fisher, R.E. Smalley Science, 1996,273, 483-487
    (4)P. Piedigrosso, Z. Konya, J.F. Colomer, A. Fonseca, G.V.Tendeloo, J.B. Nagy, Phys. Chem. Chem. Phys. 2000,2,163-170
    (5) Erik Dujardin, Long-Bao Hsin, C. R. Chris Wang, and Stephen Mann Chem. Commun., 2001,1, 1264
    (6) X. Duan and C.M. Lieber, J. Am. Chem. Soc., 2000,122, 188
    (7)M. Gudiksen et al., J. Am. Chem. Soc. 2000, 122, 8801
    (8) C.-C. Chen, C.-C. Yeh, C.H. Chen, M.Y. Yu, H.L. Liu, J.J. Wu, K.H. Chen, L.C. Chen, J.Y. Peng, and Y.F. Chen, J. Am. Chem. Soc.2001, 123, 2791-2798
    (9)M. He et al., Appl. Phys. Lett., 2000, 77, 3731
    (10)S. T. Lee et al., J. Mater. Res., 1999, 14, 4503
    (11)C. H. Liang,a) G. W. Meng, G. Z. Wang, Y. W. Wang, and L. D. Zhang Appl. Phys. Lett.2001,78(21),3202-3204
    (12)H.Z. Zhang, Y.C. Kong, Y.Z. Wang, X. Du, Z.G. Bai, J.J. Wang, D.P. Yu, Y. Ding,Q.L. Hang, S.Q. Feng Solid State Commun.1999,109 677–682
    (13)T. Rueckes et al., Science,2000, 289, 94
    (14)吳茂昆教授,奈米科技交流討論會(九十年十月二日)簡報資料。
    (15)Brus, L. E. J. Phys. Chem. 1994, 98, 3575.
    (16)Kalyanasundaram, K.; Borgarello, E.; Duonghong, D.; Gratzel, M. Angew. Chem. Int. Ed. Engl. 1981, 20, 987.
    (17)(a) Rupp, J.; Birringer, R. Phys. Rev. 1987, B36, 7888. (b) Hellstren, E.; Fecht, H.; Fu, Z.; Johnson, W. L. J. Appl. Phys. 1989, 65, 305.
    (18)Gleiter, H. Prog. Mater. Sci. 1989, 32, 223.
    (19)A. P. Alivisatos, Science, 1996, 271, 933-937
    (20)Science 1996, 271, 933-937
    (21)Wagner, R. S., Ellis, W. C. Appl. Phys. Lett. 1964, 4, 89
    (22)Pan, Z. W.; Xie, S. S.; Chang, B. H.; Wang, C. Y.; Lu, L.; Liu,
    W.; Zhou, W. Y.; Li, W. Z.; Qian, L. X. Nature 1998, 394, 631.
    (23)Pan, Z. W.; Xie, S. S.; Chang, B. H.; Sun, L. F.; Zhou, W. Y.;
    Wang, G. Chem. Phys. Lett. 1999, 299, 97
    (24)W. S. Shi, Y. F. Zheng, N. Wang,a) C. S. Lee, and S. T. Lee J. Vac. Sci. Technol. B, 2001,19, 4, 1115-1118
    (25)Mark S. Gudiksen and Charles M. Lieber, J. Am. Chem. Soc. 2000, 122, 8801-8802
    (26)Yiying Wu and Peidong Yang, J. Am. Chem. Soc. 2001, 123, 3165-3166
    (27) J. Zhanga, L. D. Zhang, X. F. Wang, C. H. Liang, X. S. Peng, and Y. W. Wang, J. Chem. Phys.1999 115, 13 ,5714-5717
    (28) Jianchun Bao, Chenyang Tie, Zheng Xu, Quanfa Zhou, Dong Shen, and Qiang Ma Adv. Mater. 2001, 13, 21, 1631-1633
    (29) Dmitri V. Talapin, Elena V. Shevchenko, Andreas Kornowski, Nikolai Gaponik, Markus Haase, Andrey L. Rogach, Horst Weller Adv. Mater. 2001, 13, 24, 1868-1871
    (30)Z. Adam Peng and Xiaogang Peng, J. Am. Chem. Soc. 2001, 123, 1389-1395
    (31) Lianhua Qu and Xiaogang Peng, J. Am. Chem. Soc. 2002, 124, 2049-2055
    (32) Scott L. Cumberland, Khalid M. Hanif, Artjay Javier, Gregory A.Khitrov, Geoffrey F. Strouse, Stephen M. Woessner, and C. Steven Yun, Chem. Mater. 2002, 14, 1576-1584
    (33)Jessica O. Winter, Timothy Y. Liu, Brian A. Korgel, Christine E. Schmidt, Adv. Mater. 2001, 13, 22, 1673-1677
    (34)Yu-Ying Yu, Ser-Sing Chang, Chien-Liang Lee, and C. R. Chris Wang, J. Phys. Chem. B, 1997, 101,34, 6661-6664
    (35)Byung Hee Hong, Sung Chul Bae, Chi-Wan Lee, Sukmin Jeong, Kwang S. Kim, Science,2001 ,294 ,348-351
    (36)S. T. Lee et al., J. Mater. Res., 1999,14(12), 4503
    (37)J. D. Holmes et al., Science,2000,287, 1471
    (38)L. C. Chen et al., J. Phys. Chem. Solids,2001,62, 1567
    (39)M. He et al., Appl. Phys. Lett.,2000, 77(23), 3731.
    (40)H. Y. Peng, N. Wang, W. S. Shi, Y. F. Zhang, C. S. Lee, and S. T. Lee, J. Appl. Phys.2001, 89, 727-731
    (41)C.S.Lee,S.T.Lee Chem. Phys. Lett. 2001,345 377-380
    (42)Xiangfeng Duan and Charles M. Lieber, J. Am. Chem. Soc. 2000, 122, 188-189
    (43)W. Han, S. Fan, Q. Li, and Y. Hu, Science,1997 ,277, 1287
    (44)Michael H. Huang,1 Samuel Mao,2 Henning Feick,3 Haoquan Yan,
    Yiying Wu, Hannes Kind, Eicke Weber, Richard Russo, Peidong Yang, Science ,2001,292,1897-1899

    無法下載圖示
    QR CODE