研究生: |
阮明可 Nguyen, Minh Khiem |
---|---|
論文名稱: |
水稻葉綠素缺失突變株之葉綠素新陳代謝之研究 Chlorophyll Metabolism of Chlorophyll-Deficient Mutant of Rice (Oryza sativa L.) |
指導教授: |
楊棋明
Yang, Chi-Ming 鍾國芳 Chung, Kuo-Fang |
口試委員: |
林冠宏
Lin, Kuan-Hung 黃盟元 Huang, Meng-Yuan 孫智雯 Sun, Chih-Wen 傅瀚儀 Fu, Han-Yi |
口試日期: | 2021/06/04 |
學位類別: |
博士 Doctor |
系所名稱: |
生命科學系 Department of Life Science |
論文出版年: | 2021 |
畢業學年度: | 109 |
語文別: | 英文 |
論文頁數: | 154 |
英文關鍵詞: | Chl-deficient mutant, Grana, Photosynthesis, Mutant, Oryza sativa |
研究方法: | Pigment assessment 、 Ultra structrure analysis 、 Next Generation Sequencing 、 RT-qPCR 、 RNA-Seq |
DOI URL: | http://doi.org/10.6345/NTNU202100554 |
論文種類: | 學術論文 |
相關次數: | 點閱:100 下載:3 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
Photosynthesis is a vital biological process in higher plants, which contributes to approximately 90% of biomass production in crops. Therefore, enhancing photosynthesis is considered as an effective strategy for increasing crop yield. In addition, photosynthesis take place in chloroplasts where chlorophylls (Chl) biosynthesis and degradation occur. Chloroplast pigments are extremely important during photosynthesis since they play an essential role in light absorption and energy transfer. Therefore, understanding and enhancing the efficiency of Chl biosynthesis are a potential way to increase accumulation of pigments and crop yield.
Chl-deficient mutants is valuable approach for studying pigment synthesis. Generally, Chl-deficient mutants can be classified into two main types, namely, Chl b-lacking mutants (with undetectable Chl b) and Chl b-deficient mutants (containing reduced levels of Chl b). Next-generation sequencing (NGS) for transcriptome profiling was used to determine the transcription profiles and photosynthetic characteristics underlying different Chl a/b ratio of Chl b-lacking rice (Chl a/b ratio of ch1); Chl b-deficient rice (Chl a/b ratio of 11.25, ch11) and type 2b (Chl a/b ratio of 15.7, ch14).
In the first chapter, the literature on the characteristic of chlorophyll-deficient mutants and the function and metabolism of Chl in higher plant.
In the second, third and fourth chapter, the photosynthetic properties and transcriptomic profiles of wildtype and Chl b-lacking (ch11), 2 types of Chl b deficient mutants (ch11, ch14) of rice were investigated. Those mutants exhibited dwarf phenotype, light green leaves, and abnormal chloroplast structure (i.e., loss or small of starch granules, abundant vesicles, and abundant plastoglobuli), indicating abnormal plastid development with amplifier Chl a/b ratio. Changes in the expression of genes related to Chl metabolism, chloroplast development, cell division, and photosynthesis were found to be associated with abnormal chloroplast development and reduced Chl accumulation in the mutants. qPCR analysis was used to validate the DEGs. The data indicated that an increase in the Chl a/b may attribute to both a reduction in Chl content, owing to abnormal chloroplast development, and the involvement of an alternative degradation pathway.
In the fifth chapter, the effect of temperature on the Chl biosynthesis and characteristic of ch1 rice was further investigated. The data indicated that ch1 was sensitive to low temperature at beginning of incubation and may adapt to temperatures ranging from 15 °C to 35 °C.
In the sixth chapter, the effect of shade conditions on Chl biosynthesis in ch1 and wt was evaluated. Pigment contents, ultrastructure analysis, and RT-qPCR was evaluated in ch1 under 2 shade conditions. The data revealed that Chl b was unable to be generated in ch1 rice whereas Chl a remained unchanged. The results suggested that Chl b in ch1 rice was degraded or unable to generated rather than rapidly converted to Chl a during shade conditions.
The final chapter discussed the finding and future works on Chl-deficient mutants.
CHAPTER 1
Abe T., Matsuyama T., Sekido S., et al.: Chlorophyll-deficient mutants of rice demonstrated the deletion of a dna fragment by heavy-ion irradiation. J. Radiat. Res. 43: 157–161, 2002.
Allen K.D., Duysen M.E., Staehelin L.A.: Biogenesis of thylakoid membranes is controlled by light intensity in the conditional chlorophyll b-deficient CD3 mutant of wheat. – J. Cell Biol. 107: 907, 1988.
Ambavaram M.M.R., Basu S., Krishnan A. et al.: Coordinated regulation of photosynthesis in rice increases yield and tolerance to environmental stress. – Nat. Commun. 5: 1–14, 2014.
Arora A., Sairam R.K., Srivastava G.C.: Oxidative stress and antioxidative system in plants. - Curr Sci. 82: 1227–1238, 2002.
Bellemare G., Bartlett S.G., Chua N.H.: Biosynthesis of chlorophyll a/b-binding polypeptides in wild type and the chlorina f2 mutant of Barley. – J. Biol. Chem. 257: 7762–7767, 1982.
Blankenship R.E.: Molecular mechanisms of photosynthesis. - John Wiley & Sons, 2014.
Boardman N.K., Highkin H.K.: Studies on a barley mutant lacking chlorophyl b. I. Photochemical activity of isolated chloroplasts. Biochim. Biophys. Acta. – Biophys. Incl. Photosynth. 126:189–199, 1996.
Caffarri S., Tibiletti T., C Jennings R., Santabarbara S.: A comparison between plant photosystem I and photosystem II architecture and functioning. – Curr. Protein Pept. Sci. 15: 296–331, 2014.
Chen X., Zhang W., Xie Y., et al.: Comparative proteomics of thylakoid membrane from a chlorophyll b-less rice mutant and its wild type. - Plant Sci. 173: 397–407, 2007.
Chu P., Yan G.X., Yang Q., et al.: iTRAQ-based quantitative proteomics analysis of Brassica napus leaves reveals pathways associated with chlorophyll deficiency. J. Proteomics 113: 244–259, 2015.
Droppa M, Ghi.ardi M.L., Horvath G., Melis A.: Chlorophyll b deficiency in soybean mutants. II. Thylakoid membrane development and differentiation. BBA – Bioenerg. 932: 138–145, 1988.
Duysen M.E., Freeman T.P., Williams N.D., Olson L.L.: Regulation of excitation energy in a wheat mutant deficient in light-harvesting pigment protein complex 1. Plant Physiol. 76: 561–566, 1984.
Eckhardt U., Grimm B., Hörtensteiner S.: Recent advances in chlorophyll biosynthesis and breakdown in higher plants. - Plant Mol Biol. 56: 1–14, 2004.
Eskins K., Delmastro D., Harris L.: A comparison of pigment-protein complexes among normal, chlorophyll-deficient and senescent soybean genotypes. - Plant Physiol. 73: 51, 2004.
Fromme P., Melkozernov A., Jordan P., Krauss N.: Structure and function of photosystem I: interaction with its soluble electron carriers and external antenna systems. FEBS Lett. 555:40–44, 2003.
Falbel T.C., Staehelin A.: Characterization of a family of chlorophyll-deficient wheat defects in the magnesium-insertion step of chlorophyll biosynthesis. -Small. 104: 639–648, 1994.
Fromme P., Melkozernov A., Jordan P., Krauss N.: Structure and function of photosystem I: interaction with its soluble electron carriers and external antenna systems. - FEBS Lett. 555: 40–44, 2003.
Fuesler T.P., Wong Y.S., Castelfranco P.A.: Localization of mg-chelatase and mg-protoporphyrin ix monomethyl ester (oxidative) cyclase activities within isolated, developing cucumber chloroplasts. - Plant Physiol. 75: 662–664, 1984.
Greene B.A., Allred D.R., Morishige D.T., Staehelin L.A.: Hierarchical response of light harvesting chlorophyll-proteins in a light-sensitive chlorophyll b-deficient mutant of maize. - Plant Physiol. 87: 357–364, 1988.
Gupta J.: Climate Change and Water Law, In impact of climate change on water and health, CRC Press, Boca Raton, Florida, USA, 2013.
Harpster M.H., Mayfield S.P., Taylor W.C.: Effects of pigment-deficient mutants on the accumulation of photosynthetic proteins in maize. Plant Mol. Biol. 3:59–71, 1984.
Hopkins W.G., Hayden D.B., Neuffer M.G.: A light-sensitive mutant in maize (Zea mays L.) I. Chlorophyll, chlorophyll-protein and ultrastructural studies. – Zeitschrift. Für. Pflanzenphysiologie. 99: 417–426, 1980.
Huang J., Qin F., Zang G. et al.: Mutation of OsDET1 increases chlorophyll content in rice. - Plant Sci. 210: 241–249, 2013.
Ito H., Ohtsuka T., Tanaka A.: Conversion of chlorophyll b to chlorophyll a via 7-hydroxymethyl chlorophyll. - J .Biol. Chem. 271: 1475–1479, 1996.
Jin E., Yokthongwattana K., Polle J.E.W., Melis A.: Role of the reversible xanthophyll cycle in the photosystem II damage and repair cycle in Dunaliella salina. - Plant Physiol. 132: 352–364, 2003.
King J.: The genetic basis of plant physiological processes. - Oxford University Press, New York, 1991.
Landi M., Zivcak M., Sytar O. et al.: Plasticity of photosynthetic processes and the accumulation of secondary metabolites in plants in response to monochromatic light environments: A review. – Biochim. Biophys Acta. Bioenerg. 1861: 148131, 2020.
Liu W., Fu Æ.Y., Hu Æ.G. et al.: Identification and fine mapping of a thermo-sensitive chlorophyll deficient mutant in rice (Oryza sativa L.). 785–795, 2007.
Markwell J., Osterman J.C.: Pccurrence of temperature-sensitive phenotypic plasticity in chlorophyll-deficient mutants of Arabidopsis thaliana. - Plant Physiol. 98: 392, 1992.
Markwell J.P., Danko S.J., Bauwe H.: et al.: A temperature-sensitive chlorophyll b-deficient mutant of sweetclover (Melilotus alba). - Plant Physiol. 81:329, 1986.
Masuda T., Fujita Y.: Regulation and evolution of chlorophyll metabolism. - Photochem Photobiol Sci. 7: 1131–1149, 2008.
Michel H., Tellenbach M., Boschetti A.: A chlorophyll b-less mutant of Chlamydomonas reinhardii lacking in the light-harvesting chlorophyll ab-protein complex but not in its apoproteins. – Biochim. Biophys. Acta. Bioenerg. 725: 417–424, 1983.
Mitchell P.L., Sheehy J.E.: Supercharging rice photosynthesis to increase yield. - New Phytol. 171: 688–693, 2006.
Müller P., Li X.P., Niyogi K.K.: Non-photochemical quenching. A response to excess light energy. - Plant Physiol. 125: 1558–1566, 2001.
Philippar K., Geis T., Ilkavets I., et al.: Chloroplast biogenesis: The use of mutants to study the etioplast–chloroplast transition. Proc. Natl. Acad. Sci. 104:678– 683, 2007.
Philip Thornber J., R. Highkin H.: Composition of the photosynthetic apparatus of normal barley leaves and a mutant lacking chlorophyll b, 1974.
Pontoppidan B., Kannangara C.G.: Purification and partial characterization of barley glutamyl-tRNAGlu reductase, the enzyme that directs glutamate to chlorophyll biosynthesis. – Eur. J. Biochem. 225: 529–537, 1994.
Rüdiger W.: Chlorophyll metabolism: From outer space down to the molecular level. Phytochemistry. 46: 1151–1167, 1997.
Rühle W., Reiländer H., Otto K.D, Wild A.: Chlorophyll-protein-complexes of thylakoids of wild type and chlorophyll b mutants of Arabidopsis thaliana. – Photosynth. Res. 4: 301–305, 1983.
Sassa S.: Delta-aminolaevulinic acid dehydratase assay. - Enzyme. 28: 133–145, 1982.
Somerville C.R.: Analysis of photosynthesis with mutants of higher plants and algae. - Annu. Rev. Plant Physiol. 37: 467–506, 1986.
Tanaka A., Tanaka R.: The biochemistry, physiology, and evolution of the chlorophyll cycle. -In: Advances in Botanical Research. 90: 183-212, 2019.
Terao T., Katoh S.: Antenna sizes of pholosystem I and photosystem II in chlorophyll b-deficient mutants of rice. Evidence for an antenna function of photosystem II centers that are inactive in electron transport. – Plant Cell Physiol. 37: 307–312, 1996.
Terao T., Yamashita A., Katoh S.: Chlorophyll b-deficient mutants of rice. 1. Absorption and fluorescence spectra and chlorophyll a/b ratios. – Plant Cell Physiol. 26: 1361–1367, 1985.
Terry M., Smith A.: A model for tetrapyrrole synthesis as the primary mechanism for plastid-to-nucleus signaling during chloroplast biogenesis. – Front. Plant. Sci. 4: 14, 2013.
Verkamp E., Jahn M., Jahn D. et al.: Glutamyl-tRNA reductase from Escherichia coli and Synechocystis 6803: Gene structure and expression. – J. Biol. Chem. 267: 8275–8280, 1992.
Voitsekhovskaja O.V., Tyutereva E.V.: Chlorophyll b in angiosperms: Functions in photosynthesis, signaling and ontogenetic regulation. – J. Plant. Physiol. 189: 51–64, 2015.
Von Wettstein D., Gough S., Kannangara C.G.: Chlorophyll biosynthesis. Plant Cell 7: 1039, 1995.
Vothknecht U.C., Kannangara C.G., Von Wettstein D.: Expression of catalytically active barley glutamyl tRNAGlu reductase in Escherichia coli as a fusion protein with glutathione S-transferase. – Proc. Natl. Acad. Sci. 93: 9287–9291, 1996.
Willows R., Hansson M.: Mechanism, structure, and regulation of magnesium chelatase, 2003.
Wykoff D.D., Davies J.P., Melis A., Grossman A.R.: The regulation of photosynthetic electron transport during nutrient deprivation in Chlamydomonas reinhardtii. – Plant Physiol. 117: 129–139, 1998.
Yang C.M, Osterman J.C., Markwell J.: Temperature sensitivity as a general phenomenon in a collection of chlorophyll-deficient mutants of sweetclover (Melilotus alba). Biochem. Genet. 28: 31–40, 1990.
Yang C.M., Hsu J.C., Chen Y.R.: Light- and temperature-sensitivity as a general phenomenon in a collection of chlorophyll-deficient mutants of sweetclover (Melilotus alba). – BioCh. Gene. 28: 31–40, 1995.
Yang C.M., Hsu J.C., Chen Y.R.: Light- and temperaturer-sensitive of chlorophyll-deficient and virescent mutant. – Taiwania. 38: 49–56, 1993.
CHAPTER 2
Ambavaram M.M.R., Basu S., Krishnan A. et al.: Coordinated regulation of photosynthesis in rice increases yield and tolerance to environmental stress. – Nat. Commun. 5: 1-14, 2014.
Audic S., Claverie J.M.: The significance of digital gene expression profiles. – Genome Res. 7: 986–995, 1997.
Ben-Shem A., Frolow F., Nelson N.: Crystal structure of plant photosystem I. – Nature 426: 630-635, 2003.
Bujaldon S., Kodama N., Rappaport F. et al.: Functional accumulation of antenna proteins in Chlorophyll b-less mutants of Chlamydomonas reinhardtii. – Mol Plant 10: 115-130, 2017
Chen X., Zhang W., Xie Y. et al.: Comparative proteomics of thylakoid membrane from a chlorophyll b-less rice mutant and its wild type. – Plant Sci. 173: 397-407, 2007.
Chu P., Yan G.X., Yang Q. et al.: ITRAQ-based quantitative proteomics analysis of Brassica napus leaves reveals pathways associated with chlorophyll deficiency. – J. Proteomics 113: 244–259, 2015.
Eckhardt U., Grimm B., Hörtensteiner S.: Recent advances in chlorophyll biosynthesis and breakdown in higher plants. – Plant Mol. Biol. 56: 1-14, 2004.
Eskins K., Delmastro D., Harris L.: A comparison of pigment-protein complexes among normal, chlorophyll-deficient and senescent soybean genotypes. – Plant Physiol. 73: 51, 1983.
Fan J., Liu Q., Hao Q. et al.: Crystal structure of uroporphyrinogen decarboxylase from Bacillus subtilis. – J. Bacteriol 189: 3573-3580, 2007.
Fang Y., Zhao S., Zhang F. et al.: The Arabidopsis glutamyl-tRNA reductase (GluTR) forms a ternary complex with FLU and GluTR-binding protein. – Sci. Rep. 6: 19756, 2016.
Fromme P., Melkozernov A., Jordan P. et al.: Structure and function of photosystem I: interaction with its soluble electron carriers and external antenna systems. – FEBS Lett. 555: 40-44, 2003.
Goral T.K., Johnson M.P., Duffy C.D.P. et al.: Light-harvesting antenna composition controls the macrostructure and dynamics of thylakoid membranes in Arabidopsis. – Plant J. 69: 289-301, 2012.
Gupta J.: Climate change and water law. – Impact of Climate Change on Water and Health.: 30-45, 2013.
Hanke G.T., Hase T.: Variable photosynthetic roles of two leaf-type ferredoxins in c, as revealed by RNA interference†. – Photochem. Photobiol. 84: 1302-1309, 2008.
Holtgrefe S., Bader K.P., Horton P. et al.: Decreased content of leaf ferredoxin changes electron distribution and limits photosynthesis in transgenic potato plants. – Plant Physiol. 133: 1768-1778, 2003.
Horie Y., Ito H., Kusaba M. et al.: Participation of chlorophyll b reductase in the initial step of the degradation of light-harvesting chlorophyll a/b-protein complexes in Arabidopsis. – J. Biol. Chem. 284: 17449-17456, 2009.
Huang J., Qin F., Zang G. et al.: Mutation of OsDET1 increases chlorophyll content in rice. – Plant Sci. 210: 241-249, 2013.
Huang J., Qin F., Zang G. et al.: Mutation of OsDET1 increases chlorophyll content in rice. – Plant Sci. 210: 241-249, 2013.
Ito H., Ohtsuka T., Tanaka A. Conversion of chlorophyll b to chlorophyll a via 7-Hydroxymethyl chlorophyll. – J. Biol. Chem. 271: 1475–1479, 1996.
Jin E., Yokthongwattana K., Polle J.E.W. et al.: Role of the reversible xanthophyll cycle in the Photosystem II damage and repair cycle in Dunaliella salina. Plant Physiol. 132: 352-364, 2003.
Kim E.H., Li X.P., Razeghifard R. et al.: The multiple roles of light-harvesting chlorophyll a/b-protein complexes define structure and optimize function of Arabidopsis chloroplasts: A study using two chlorophyll b-less mutants. Biochim. Biophys. Acta. – Bioenerg. 1787: 973–984, 2009.
Kräutler B.: Chlorophyll breakdown and chlorophyll catabolites in leaves and fruit. – Photochem. Photobiol. Sci. 7: 1114-1120, 2008.
Kusaba M., Ito H., Morita R. et al.: Rice Non-Yellow Coloring1 is involved in light-harvesting complex II and grana degradation during leaf senescence. – Plant Cell 19: 1362-1375, 2007.
Li W., Yang S., Lu Z. et al.: Cytological, physiological, and transcriptomic analyses of golden leaf coloration in Ginkgo biloba L. – Hortic. Res. 5: 12, 2018.
Li Y., Zhang Z., Wang P. et al.: Comprehensive transcriptome analysis discovers novel candidate genes related to leaf color in a Lagerstroemia indica yellow leaf mutant. – Genes Genomics 37: 851-863, 2015.
Lin Y.H., Pan K.Y., Hung C.H. et al.: Overexpression of ferredoxin, PETF, enhances tolerance to heat stress in Chlamydomonas reinhardtii. – Int. J. Mol. Sci. 14: 20913-20929, 2013.
Liu W., Fu Y., Hu G. et al.: Identification and fine mapping of a thermo-sensitive chlorophyll deficient mutant in rice (Oryza sativa L.). – Planta 226: 785-795, 2007.
Masuda T., Fujita Y.: Regulation and evolution of chlorophyll metabolism. – Photochem. Photobiol. Sci. 7: 1131–1149, 2008.
Meier S., Tzfadia O., Vallabhaneni R. et al.: A transcriptional analysis of carotenoid, chlorophyll and plastidial isoprenoid biosynthesis genes during development and osmotic stress responses in Arabidopsis thaliana. – B.M.C. Syst. Biol. 5: 77, 2011.
Mitchell P.L., Sheehy J.E.: Supercharging rice photosynthesis to increase yield. – New Phytol. 171: 688-693, 2006.
Nakatani H.Y., Baliga V.: A clover mutant lacking the chlorophyll a- and b-containing protein antenna complexes. – Biochem. Biophys. Res. Commun. 131: 182-189, 1985.
Nelson N., Yocum CF.: Structure and function of photosystems I and II. – Annu. Rev. Plant Biol. 57: 521-565, 2006.
Ouijja A., Farineau N., Cantrel C. et al.: Biochemical analysis and photosynthetic activity of chloroplasts and Photosystem II particles from a barley mutant lacking chlorophyll b. – Biochim. Biophys. Acta. – Bioenerg. 932: 97–106, 1988.
Reinbothe C., Bartsch S., Eggink L.L. et al.: A role for chlorophyllide oxygenase in the regulated import and stabilization of light-harvesting chlorophyll proteins. – Proc. Natl. Acad. Sci. USA 103: 4777-4782, 2006.
Rühle W., Reiländer H., Otto K.D. et al.: Chlorophyll-protein-complexes of thylakoids of wild type and chlorophyll b mutants of Arabidopsis thaliana. – Photosynth. Res. 4: 301–305, 1983.
Sato Y., Morita R., Katsuma S. et al.: Two short-chain dehydrogenase/reductases, NON-YELLOW COLORING 1 and NYC1-LIKE, are required for chlorophyll b and light-harvesting complex II degradation during senescence in rice. – Plant J. 57: 120-131, 2009.
Schmitz A.J., Glynn J.M., Olson B.J.S.C. et al.: Arabidopsis FtsZ2-1 and FtsZ2-2 are functionally redundant, but Ftsz-based plastid division is not essential for chloroplast partitioning or plant growth and development. – Mol. Plant 2: 1211-1222, 2009.
Seo T.S., Bai X., Ruparel H. et al.: Photocleavable fluorescent nucleotides for DNA sequencing on a chip constructed by site-specific coupling chemistry. – Proc. Natl. Acad. Sci. 101: 5488-5493, 2004.
Shi L.X., Hall M., Funk C., Schröder W.P.: Photosystem II, a growing complex: Updates on newly discovered components and low molecular mass proteins. – Biochim. Biophys. Acta. – Bioenerg. 1817: 13-25, 2012.
Shimoda Y., Ito H., Tanaka A.: Conversion of chlorophyll b to chlorophyll a precedes magnesium dechelation for protection against necrosis in Arabidopsis. – Plant J. 72: 501–511, 2012.
Spurr A.R.: A low-viscosity epoxy resin embedding medium for electron microscopy. – J. Ultrastruct. – Res. 26: 31-43, 1969.
Tanaka A., Tanaka R.: Chlorophyll metabolism. – Curr. Opin. Plant Biol. 9: 248-255, 2006.
Tanaka A., Tanaka R.: Chapter Six - The biochemistry, physiology, and evolution of the chlorophyll cycle. – In: Grimm BBT-A in BR (ed): Metabolism, structure and function of plant tetrapyrroles: Introduction, microbial and eukaryotic chlorophyll synthesis and catabolism Pp. 183-212. Academic Press 2019.
Terao T., Sonoike K., Yamazaki J. et al.: Stoichiometries of photosystem I and photosystem II in rice mutants differently deficient in chlorophyll b. Plant Cell Physiol. 37: 299–306, 1996.
Terao T., Yamashita A., Katoh S.: Chlorophyll b-deficient mutants of rice: I. Absorption and fluorescence spectra and chlorophyll a/b ratios. – Plant Cell Physiol. 26: 1361-1367, 1985a.
Terao T., Yamashita A., Katoh S.: Chlorophyll b-deficient mutants of rice: II. Antenna chlorophyll a/b – Protein of photosystem I and II. – Plant Cell Physiol. 26: 1369-1377, 1985b.
Thornber J.P., Highkin H.R.: Composition of the Photosynthetic Apparatus of Normal Barley Leaves and a Mutant Lacking Chlorophyll b. - European Journal of Biochemistry. 41: 109-116, 1974.
Wang F., Wang G., Li X., et al.: Heredity, physiology and mapping of a chlorophyll content gene of rice (Oryza sativa L.). – J. Plant Physiol. 165: 324-330, 2008.
Wang L., Yue C., Cao H. et al.: Biochemical and transcriptome analyses of a novel chlorophyll-deficient chlorina tea plant cultivar. – B.M.C. Plant Biol. 14: 352, 2014.
Wang Z., Gerstein M., Snyder M.: RNA-Seq: a revolutionary tool for transcriptomics. – Nat. Rev. Genet. 10: 57, 2009.
Yang C.M., Chen H.Y.: Grana stacking is normal in a chlorophyll-deficient LT8 mutant of rice. – Bot. Bull. Acad. Sin. 37: 31–34, 1996.
Yang C.M., Osterman J.C., Markwell J. Temperature sensitivity as a general phenomenon in a collection of chlorophyll-deficient mutants of sweetclover (Melilotus alba). – Biochem. Genet. 28: 31-40, 1990.
Yang C.M., Chang K.W., Yin M.H., et al.: Method for the determination of the chlorophylls and their derivatives. – Taiwania 43: 116-122, 1998.
Yang H.Y., Xia X.W., Fang W. et al.: Identification of genes involved in spontaneous leaf color variation in Pseudosasa japonica. – Genet. Mol. Res. 14: 11827-11840, 2015a.
Yang Y., Chen X., Xu B. et al.: Phenotype and transcriptome analysis reveals chloroplast development and pigment biosynthesis together influenced the leaf color formation in mutants of Anthurium andraeanum ‘Sonate.’ – Front Plant Sci. 6: 139, 2015b.
Yang Y. Xu J. Huang L. et al. PGL, encoding chlorophyllide a oxygenase 1, impacts leaf senescence and indirectly affects grain yield and quality in rice. – J. Exp. Bot. 67: 1297-1310, 2015c.
Zhang H., Zhang D., Han S. et al.: Identification and gene mapping of a soybean chlorophyll-deficient mutant. – Plant Breed. 130: 133-138, 2011.
Zhao X., Chen T., Feng B. et al.: Non-photochemical quenching plays a key role in light acclimation of rice plants differing in leaf color. – Front Plant Sci. 7: 1968, 2017.
Zhu H., Zhou Y.Y., Zhai H. et al.: Transcriptome profiling reveals insights into the molecular mechanism of drought tolerance in sweetpotato. – J. Integr. Agric. 18: 9-23, 2019.
CHAPTER 3
Abe T., Matsuyama T., Sekido S. et al.: Chlorophyll-deficient mutants of rice demonstrated the deletion of a DNA fragment by heavy-ion irradiation. – J. Radiat. Res. 43: 57-6, 2002.
Albrecht V., Ingenfeld A., Apel K. et al: Characterization of the snowy cotyledon 1 mutant of Arabidopsis thaliana: The impact of chloroplast elongation factor g on chloroplast development and plant vitality. - Plant Mol. Biol. 60: 507–518, 2006.
Allen J.F.: How does protein phosphorylation regulate photosynthesis? - Trends Biochem. Sci. 17:12–17, 1992.
Amarnath K., Bennett D.I.G., Schneider A.R., Fleming G.R.: Multiscale model of light harvesting by photosystem II in plants. – Proc. Natl. Acad. Sci. 113: 1156–1161, 2016.
Apel K.: Chlorophyll biosynthesis — metabolism and strategies of higher plants to avoid photooxidative stress. - In: Regulation of photosynthesis. Springer., 235–252, 2001.
Audic S., Claverie J.M.: The significance of digital gene expression profiles. - Genome Res 7: 986–995, 1997.
Avenson T.J., Cruz J.A., Kanazawa A., Kramer D.M.: Regulating the proton budget of higher plant photosynthesis. – Proc. Natl. Acad. Sci. USA. 102: 9709– 9713, 2005.
Barber J.: Influence of surface charges on thylakoid structure and function. – Annu. Rev. Plant Physiol. 33: 261–295, 1982.
Bennett J.: Protein phosphorylation in green plant chloroplasts. – Annu. Rev. Plant Biol. 42: 281–311, 1991.
Blankenship R.E.: Molecular mechanisms of photosynthesis. - John Wiley & Sons, 2014.
Bujaldon S., Kodama N., Rappaport F. et al.: Functional Accumulation of Antenna Proteins in Chlorophyll b-Less Mutants of Chlamydomonas reinhardtii. Mol. Plant. 10: 115–130, 2017.
Cha K.W., Lee Y.J., Koh H.J. et al.: Isolation, characterization, and mapping of the stay green mutant in rice. – Theor. Appl. Genet. 104: 526–532, 2002.
Chen X., Zhang W., Xie Y. et al.: Comparative proteomics of thylakoid membrane from a chlorophyll b-less rice mutant and its wild type. Plant Sci. 173: 397–407, 2007.
Chu P., Yan G.X., Yang Q. et al.: ITRAQ-based quantitative proteomics analysis of Brassica napus leaves reveals pathways associated with chlorophyll deficiency. – J. Proteomics. 113: 244–259, 2015.
Droppa M., Ghirardi M.L., Horvath G., Melis A.: Chlorophyll b deficiency in soybean mutants. II. Thylakoid membrane development and differentiation. – BBA. Bioenerg. 932: 138–145, 1988.
Fageria N.K.: Yield Physiology of Rice. - J Plant Nutr. 30: 843–879, 2007. 10.1080/15226510701374831
Fang Y., Zhao S., Zhang F. et al.: The Arabidopsis glutamyl-tRNA reductase (GluTR) forms a ternary complex with FLU and GluTR-binding protein. – Sci. Rep. 6: 19756, 2016.
Flood P.J., Kruijer W., Schnabel S.K. et al.: Phenomics for photosynthesis, growth and reflectance in Arabidopsis thaliana reveals circadian and long-term fluctuations in heritability. - Plant Methods. 12: 14, 2016.
Fromme P., Melkozernov A., Jordan P., Krauss N.: Structure and function of photosystem I: interaction with its soluble electron carriers and external antenna systems. - FEBS Lett. 555: 40–44, 2003.
Fujita Y.: Protochlorophyllide reduction: a key step in the greening of plants. - Plant cell Physiol. 37: 411–421, 1996.
Goral T.K., Johnson M.P., Duffy C.D.P. et al.: Light-harvesting antenna composition controls the macrostructure and dynamics of thylakoid membranes in Arabidopsis. -Plant J. 69: 289–301, 2012.
Gupta J. Climate change and water law. In impact of climate change on water and health, CRC Press, Boca Raton, Florida, USA, 2013.
Harpster M.H., Mayfield S.P., Taylor W.C.: Effects of pigment-deficient mutants on the accumulation of photosynthetic proteins in maize. Plant Mol. Biol. 3: 59–71, 1984.
Huang J., Qin F., Zang G. et al.: Mutation of OsDET1 increases chlorophyll content in rice. - Plant Sci. 210: 241–249, 2013.
Ito H., Ohtsuka T., Tanaka A.: Conversion of chlorophyll b to chlorophyll a via 7-hydroxymethyl chlorophyll. – J. Biol. Chem. 271: 1475–1479, 1996.
Jenny A., Mark W., Robin G. W. et al.: Absence of the Lhcb1 and Lhcb2 proteins of the light-harvesting complex of photosystem II – effects on photosynthesis, grana stacking and fitness. - Plant J. 35: 350–361, 2003.
Jung K.H., Hur J., Ryu C.H. et al.: Characterization of a rice chlorophyll-deficient mutant using the T-DNA gene-trap system. - Plant Cell Physiol. 44: 463–472, 2003.
Kim E.H., Li X.P., Razeghifard R. et al.: The multiple roles of light-harvesting chlorophyll a/b-protein complexes define structure and optimize function of Arabidopsis chloroplasts: A study using two chlorophyll b-less mutants. – Biochim. Biophys. Acta. Bioenerg. 1787: 973–984, 2009.
Kruger E.L., Volin J.C.: Reexamining the empirical relation between plant growth and leaf photosynthesis. – Funct. Plant Biol. 33: 421–429, 2006.
Kume A., Akitsu T., Nasahara K.N.: Why is chlorophyll b only used in light-harvesting systems? – J. Plant Res. 131: 961–972, 2018.
Lai Y.C., Wang S.Y., Gao H.Y. et al.: Physicochemical properties of starches and expression and activity of starch biosynthesis-related genes in sweet potatoes. - Food Chem. 199: 556–564, 2016.
Landi M., Zivcak M., Sytar O. et al.: Plasticity of photosynthetic processes and the accumulation of secondary metabolites in plants in response to monochromatic light environments: A review. – Biochim. Biophys. Acta. Bioenerg. 1861: 148131, 2020.
Li J., Yuan J.C., Cai G.Z.: Advances in the research of elevation on rice yield and quality. – Chin. Agric. Sci. Bull. 29: 1–4, 2013.
Li Y., He N., Hou J. et al.: Factors influencing leaf chlorophyll content in natural forests at the biome scale. - Front. Ecol. Evol. 6: 64, 2018.
Li Y., Zhang Z., Wang P. et al.: Comprehensive transcriptome analysis discovers novel candidate genes related to leaf color in a Lagerstroemia indica yellow leaf mutant. - Genes Genomics. 37: 851–863, 2015.
Liu S.L., Pu C., Ren Y.X. et al.: Yield variation of double-rice in response to climate change in Southern China. - Eur J Agron. 81: 161–168, 2016.
Liu W., Fu Y., Hu G. et al.: Identification and fine mapping of a thermo-sensitive chlorophyll deficient mutant in rice (Oryza sativa L.). 785–795, 2007.
Liu X., Li L., Li M. et al.: AhGLK1 affects chlorophyll biosynthesis and photosynthesis in peanut leaves during recovery from drought. - Sci Rep. 8: 2250, 2018a.
Liu X., Sun L., Wu Q. et al.: Transcriptome profile analysis reveals the ontogenesis of rooted chichi in Ginkgo biloba L. - Gene. 669: 8–14, 2018b.
Livak K.J., Schmittgen T.D.: Analysis of relative gene expression data using real-time quantitative PCR and the 2−Ct method. – Methods. 25: 402–408, 2001.
Makino A.: Photosynthesis, grain yield, and nitrogen utilization in rice and wheat. - Plant Physiol. 155: 125–129, 2011.
Man Y., Wang B., Wang J. et al.: Use of biochar to reduce mercury accumulation in Oryza sativa L: A trial for sustainable management of historically polluted farmlands. – Environ. Int.153: 106527, 2021.
Masuda T., Fujita Y.: Regulation and evolution of chlorophyll metabolism. – Photochem. Photobiol. Sci. 7: 1131–1149, 2008.
Mitchell P.L., Sheehy J.E.: Supercharging rice photosynthesis to increase yield. - New Phytol. 171: 688–693, 2006.
Mulo P.: Chloroplast-targeted ferredoxin-NADP+ oxidoreductase (FNR): Structure, function and location. - Biochim Biophys Acta. Bioenerg. 1807: 927–934, 2011.
Nelson N., Yocum C.F.: Structure and function of photosystems I and II. – Annu. Rev. Plant. Biol. 57: 521–565, 2006.
Nguyen M.K., Shih T.H., Lin S.H. et al.: Transcription analysis of chlorophyll biosynthesis in wild-type and chlorophyll b-lacking rice (Oryza sativa L.). Photosynthetica. 58: 702–711, 2020. 10.32615/ps.2020.022
Nomata J., Swem L.R., Bauer C.E., Fujita Y.: Overexpression and characterization of dark-operative protochlorophyllide reductase from Rhodobacter capsulatus. - Biochim Biophys Acta. Bioenerg. 1708: 229–237, 2005. https://doi.org/10.1016/j.bbabio.2005.02.002
Pogson B.J., Ganguly D., Albrecht-Borth V.: Insights into chloroplast biogenesis and development. – Biochim. Biophys. Acta. Bioenerg. 1847: 1017–1024, 2015. https://doi.org/10.1016/j.bbabio.2015.02.003
Razi Naqvi K., Melø T.B., Bangar Raju B.: Assaying the chromophore composition of photosynthetic systems by spectral reconstruction: application to the light-harvesting complex (LHC II) and the total pigment content of higher plants. – Spectrochim. Acta. Part A Mol. Biomol. Spectrosc. 53: 2229–2234, 1997.
Rüdiger W.: Chlorophyll metabolism: From outer space down to the molecular level. – Phytochemistry. 46: 1151–1167, 1997.
Rühle W., Reiländer H., Otto K.D., Wild A.: Chlorophyll-protein-complexes of thylakoids of wild type and chlorophyll b mutants of Arabidopsis thaliana. - Photosynth Res. 4:301–305, 1983.
Sager J.C., McFarlane J.C.: Radiation. - Plant growth Chamb. Handb., 1–29, 1997.
Schmitz A.J., Glynn J.M., Olson B.J.S.C. et al.: Arabidopsis FtsZ2-1 and FtsZ2-2 are functionally redundant, but FtsZ-based plastid division is not essential for chloroplast partitioning or plant growth and development. - Mol Plant. 2: 1211–1222, 2009.
Schoefs B.: The protochlorophyllide–chlorophyllide cycle. – Photosynth. Res. 70: 257–271, 2001.
Seo T.S., Bai X., Ruparel H. et al.: Photocleavable fluorescent nucleotides for DNA sequencing on a chip constructed by site-specific coupling chemistry. – Proc. Natl. Acad. Sci. 101: 5488–5493, 2004.
Sheng Z., Lv Y., Li W. et al.: Yellow-Leaf 1 encodes a magnesium-protoporphyrin IX monomethyl ester cyclase, involved in chlorophyll biosynthesis in rice (Oryza sativa L.). PLoS One. 12: e0177989, 2017.
Shi L.X, Hall M., Funk C., Schröder W.P.: Photosystem II, a growing complex: Updates on newly discovered components and low molecular mass proteins. Biochim. Biophys. Acta. Bioenerg. 1817: 13–25, 2012.
Shimoda Y., Ito H., Tanaka A.: Conversion of chlorophyll b to chlorophyll a precedes magnesium dechelation for protection against necrosis in Arabidopsis. - Plant J. 72: 501–511, 2012.
Somerville C.R.: Analysis of photosynthesis with mutants of higher plants and algae. – Annu. Rev. Plant Physiol. 37: 467–506, 1986.
Spurr A.R.: A low-viscosity epoxy resin embedding medium for electron microscopy. – J. Ultrastruct. Res. 26: 31–43, 1969.
Standfuss J., Terwisscha van Scheltinga A.C., Lamborghini M., Kühlbrandt W.: Mechanisms of photoprotection and nonphotochemical quenching in pea light-harvesting complex at 2.5 Å resolution. - EMBO J. 24: 919–928, 2005.
Swid N., Nevo R., Kiss V. et al.: Differential impacts of FtsZ proteins on plastid division in the shoot apex of Arabidopsis. - Dev Biol. 441: 83–94, 2018.
Tanaka A., Tanaka R.: Chlorophyll metabolism. – Curr. Opin. Plant Biol. 9: 248–255, 2006.
Tanaka A., Tanaka R.: The biochemistry, physiology, and evolution of the chlorophyll cycle. - In: Advances in Botanical Research, 2019.
Terao T., Sonoike K., Yamazaki J. et al.: Stoichiometries of photosystem i and photosystem II in rice mutants differently deficient in chlorophyll b. - Plant Cell Physiol. 37: 299–306, 1996.
Terao T., Yamashita A., Katoh S.: Chlorophyll b-deficient mutants of rice. 1. Absorption and fluorescence spectra and chlorophyll a/b ratios. - Plant Cell Physiol. 26: 1361–1367, 1985a.
Terao T., Yam, ashita A., Katoh S.: Chlorophyll b-deficient mutants of rice: II. Antenna chlorophyll a/b-proteins of photosystem I and II. - Plant Cell Physiol. 26: 1369–1377, 1985b.
Tyutereva E., Ivanova A., Voitsekhovskaja O.: On the role of chlorophyll b in ontogenetic adaptations of plants. – Biol. Bull. Rev. 4: 507–514, 2014.
Voitsekhovskaja O.V., Tyutereva E. V.: Chlorophyll b in angiosperms: Functions in photosynthesis, signaling and ontogenetic regulation. – J. Plant Physiol. 189: 51–64, 2015.
Vothknecht U.C., Kannangara C.G., Von Wettstein D.: Expression of catalytically active barley glutamyl tRNAGlu reductase in Escherichia coli as a fusion protein with glutathione S-transferase. – Proc. Natl. Acad. Sci. 93: 9287–9291, 1996.
Wang F., Wang G., Li X. et al.: Heredity, physiology and mapping of a chlorophyll content gene of rice (Oryza sativa L.). - J Plant Physiol. 165: 324–330, 2008.
Wang Z., Gerstein M., Snyder M.: RNA-Seq: a revolutionary tool for transcriptomics. - Nat Rev Genet. 10: 57, 2009.
Wu Z.M., Zhang X., Wang J.L., Wan J.M.: Leaf chloroplast ultrastructure and photosynthetic properties of a chlorophyll-deficient mutant of rice. – Photosynthetica. 52: 217–222, 2014.
Xiong Y., Xie Y., Song Q., Zeng W.: The relationship between meteorological factors and rice yield in Liuzhi special zone. - Guizhou Agric Sci. 79–81, 2009.
Yamazaki J.: Changes in the photosynthetic characteristics and photosystem stoichiometries in wild-type and Chl b-deficient mutant rice seedlings under various irradiances. – Photosynthetica. 48: 521–529, 2010.
Yang C.M., Chang K.W., Yin M.H., Huang H.M.: Methods for the determination of the chlorophylls and their derivatives. – Taiwania. 43: 116–122, 1998.
Yang C.M., Chen H.Y.: Grana stacking is normal in a chlorophyll-deficient LT8 mutant of rice. - Bot Bull Acad Sin. 37: 31–34, 1996. https://ejournal.sinica.edu.tw/bbas/content/1996/1/bot371-05.html.
Yang C.M., Osterman J.C., Markwell J.: Temperature sensitivity as a general phenomenon in a collection of chlorophyll-deficient mutants of sweetclover (Melilotus alba). – Biochem. Genet. 28: 31–40, 1990.
Yang H.Y., Xia X.W., Fang W. et al.: Identification of genes involved in spontaneous leaf color variation in Pseudosasa japonica. – Genet. Mol. Res. 14: 11827—11840, 2015a.
Yang Y., Chen X., Xu B. et al.: Phenotype and transcriptome analysis reveals chloroplast development and pigment biosynthesis together influenced the leaf color formation in mutants of Anthurium andraeanum ‘Sonate.’ 6: 139, 2015b.
Zhang H., Zhang D., Han S. et al.: Identification and gene mapping of a soybean chlorophyll-deficient mutant. - Plant Breed. 130: 133–138, 2011.
Zhao H.B., Guo H.J., Zhao L.S. et al.: Agronomic traits and photosynthetic characteristics of chlorophyll-deficient wheat mutant induced by spaceflight environment. – Acta. Agron. Sin. 37: 119–126, 2011.
Zhao X., Chen T., Feng B. et al.: Non-photochemical quenching plays a key role in light acclimation of rice plants differing in leaf color. - Front Plant Sci. 7: 1968, 2017.
Zhu H., Zhou Y., Zhai H. et al.: Transcriptome profiling reveals insights into the molecular mechanism of drought tolerance in sweetpotato. – J. Integr. Agric. 18: 9–23, 2019.
CHAPTER 4
Abe T., Matsuyama T., Sekido S., et al.: Chlorophyll-deficient mutants of rice demonstrated the deletion of a DNA fragment by heavy-ion irradiation. – J. Radiat. Res. 43 Suppl.: S157-61, 2002.
Allen J.F.: How does protein phosphorylation regulate photosynthesis? – Trends Biochem. Sci. 17: 12–17, 1992.
Allen K.D., Duysen M.E., Staehelin L.A.: Biogenesis of thylakoid membranes is controlled by light intensity in the conditional chlorophyll b-deficient CD3 mutant of wheat. – J. Cell Biol. 107:907, 1988.
Amarnath K., Bennett D.I.G., Schneider A.R., Fleming G.R.: Multiscale model of light harvesting by photosystem II in plants. – Proc. Natl. Acad. Sci. 113:1156– 1161, 2016.
Barber J.: Influence of surface charges on thylakoid structure and function. – Annu. Rev. Plant Physiol. 33:261–295, 1982.
Bennett J.: Protein phosphorylation in green plant chloroplasts. – Annu. Rev. Plant Biol. 42: 281–311, 1991.
Blankenship R.E.: Molecular mechanisms of photosynthesis. – John Wiley & Sons. 2014.
Bujaldon S., Kodama N., Rappaport F. et al.: Functional accumulation of ant.enna proteins in Chlorophyll b-less mutants of Chlamydomonas reinhardtii. – Mol. Plant. 10: 115–130, 2017.
Cha K.W., Lee Y.J., Koh H.J. et al.: Isolation, characterization, and mapping of the stay green mutant in rice. – Theor. Appl. Genet. 104: 526–532, 2002.
Chu P., Yan G.X., Yang Q. et al.: ITRAQ-based quantitative proteomics analysis of Brassica napus leaves reveals pathways associated with chlorophyll deficiency. – J. Proteomics. 113: 244–259, 2015.
Demirbaş A.: Biomass resource facilities and biomass conversion processing for fuels and chemicals. – Energy Convers Manag. 42:1357–1378, 2001.
Dubreuil C., Jin X., Barajas-López J de D., et al.: Establishment of Photosynthesis through Chloroplast Development Is Controlled by Two Distinct Regulatory Phases. – Plant Physiol. 176:1199– 1214, 2018.
Dutta S., Mohanty S., Tripathy B.C.: Role of Temperature Stress on Chloroplast Biogenesis and Protein Import in Pea. – Plant Physiol. 150:1050– 1061, 2009.
Evans L.T., Evans L.T.E., Evans L.T., Evans L.T. Feeding the ten billion: plants and population growth. – Cambridge University Press, 1998.
Flood P.J., Kruijer W., Schnabel S.K. et al.: Phenomics for photosynthesis, growth and reflectance in Arabidopsis thaliana reveals circadian and long-term fluctuations in heritability. – Plant Methods 12: 14, 2016.
Fujita Y.: Protochlorophyllide reduction: a key step in the greening of plants. – Plant Cell Physiol. 37: 411–421, 1996.
Goral T.K., Johnson M.P., Duffy C.D.P. et al.: Light-harvesting antenna composition controls the macrostructure and dynamics of thylakoid membranes in Arabidopsis. – Plant J. 69: 289-301, 2012.
Gupta J.: Climate change and water law. – Impact of Climate Change on Water and Health. 2013.
Hopkins W.G., Hayden D.B., Neuffer M.G.: A light-sensitive mutant in maize (Zea mays L.) I. Chlorophyll, chlorophyll-protein and ultrastructural studies. – Zeitschrift für Pflanzenphysiologie. 99: 417–426, 1980.
Huang J., Qin F., Zang G. et al.: Mutation of OsDET1 increases chlorophyll content in rice. – Plant Sci. 210: 241-249, 2013.
Hunter M.C., Smith R.G., Schipanski M.E. et al: Agriculture in 2050: Recalibrating Targets for Sustainable Intensification. – Bioscience. 67: 386–391, 2017.
Ito H., Ohtsuka T., Tanaka A.: Conversion of Chlorophyll b to Chlorophyll a via 7-Hydroxymethyl Chlorophyll. – J. Biol. Chem. 271: 1475–1479, 1996.
Jenny A., Mark W., Robin G. W. et al.: Absence of the Lhcb1 and Lhcb2 proteins of the light-harvesting complex of photosystem II – effects on photosynthesis, grana stacking and fitness. – Plant J. 35: 350–361, 2003.
Jung K.H., Hur J., Ryu C.H. et al.: Characterization of a rice chlorophyll-deficient mutant using the T-DNA gene-trap system. – Plant Cell Physiol. 44: 463–472, 2003.
Kato K.K., Palmer R.G.: Duplicate chlorophyll-deficient loci in soybean. – Genome.
Kim E.H., Li X.P., Razeghifard R. et al.: The multiple roles of light-harvesting chlorophyll a/b-protein complexes define structure and optimize function of Arabidopsis chloroplasts: A study using two chlorophyll b-less mutants. – Biochim. Biophys. Acta. Bioenerg. 1787: 973–984, 2009.
Landi M., Zivcak M., Sytar O. et al.: Plasticity of photosynthetic processes and the accumulation of secondary metabolites in plants in response to monochromatic light environments. – A Review Biochim. Biophys. Acta. – Bioenerg. 1861: 148131, 2020.
Levicán G., Katz A., de Armas M. et al.: Regulation of a glutamyl-tRNA synthetase by the heme status. – Proc. Natl. Acad. Sci. 104:3135– 3140, 2007.
Li C.F., Xu Y., Ma J.Q. et al.: Biochemical and transcriptomic analyses reveal different metabolite biosynthesis profiles among three color and developmental stages in ‘Anji Baicha’ (Camellia sinensis). 2016.
Li W., Yang S., Lu Z. et al.: Cytological, physiological, and transcriptomic analyses of golden leaf coloration in Ginkgo biloba L. – Hortic. Res. 5: 12, 2018.
Li Y., Zhang Z., Wang P. et al.: Comprehensive transcriptome analysis discovers novel candidate genes related to leaf color in a Lagerstroemia indica yellow leaf mutant. – Genes Genomics. 37: 851-863, 2015.
Liu W., Fu Y., Hu G. et al.: Identification and fine mapping of a thermo-sensitive chlorophyll deficient mutant in rice (Oryza sativa L.). – Planta. 226: 785-795, 2007.
Liu X., Li L., Li M. et al.: AhGLK1 affects chlorophyll biosynthesis and photosynthesis in peanut leaves during recovery from drought. – Sci. Rep. 8:2250, 2018.
Livak K.J., Schmittgen T.D.: Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT Method. – Methods 25: 402–408, 2001.
Lokstein H., Härtel H., Hoffmann P., Renger G.: Comparison of chlorophyll fluorescence quenching in leaves of wild-type with a chlorophyll-b-less mutant of barley (Hordeum vulgare L.). – J. Photochem. Photobiol b Biol. 19:217–225, 1993.
Long S.P., Zhu X.G., Naidu S.L., Ort D.R.: Can improvement in photosynthesis increase crop yields? Plant. – Cell Environ. 29:315–330, 2006.
Masuda T., Fujita Y.: Regulation and evolution of chlorophyll metabolism. – Photochem. Photobiol. Sci. 7:1131–1149, 2008.
Milovanovic V., Smutka L.: Asian countries in the global rice market. – ACTA Univ. Agric Silvic. mendelianae Brun. 65: 679– 688, 2017.
Mitchell P.L., Sheehy J.E.: Supercharging rice photosynthesis to increase yield. – New Phytol. 171: 688–693, 2006.
Morita R., Kusaba M., Yamaguchi H., et al.: Characterization of Chlorophyllide a Oxygenase (CAO) in Rice. – Breed Sci. 55: 361– 364, 2005.
Murchie E.H., Pinto M., Horton P.: Agriculture and the new challenges for photosynthesis research. New Phytol. 181: 532– 552, 2009.
Nelson N., Yocum C.F.: Structure and function of photosystems I and II. – Annu. Rev. Plant Biol. 57: 521–565, 2006.
Nguyen M.K., Shih T.H., Lin S.H. et al.: Transcription analysis of chlorophyll biosynthesis in wild-type and chlorophyll b-lacking rice (Oryza sativa L.). – Photosynthetica. 58: 702– 711, 2020.
Nomata J., Swem L.R., Bauer C.E. et al.: Overexpression and characterization of dark-operative protochlorophyllide reductase from Rhodobacter capsulatus. – Biochim. Biophys. Acta. Bioenerg. 1708: 229– 237, 2005.
Oster U., Tanaka R., Tanaka A., Rüdiger W.: Cloning and functional expression of the gene encoding the key enzyme for chlorophyll b biosynthesis (CAO) from Arabidopsis thaliana. – Plant J. 21: 305– 310, 2000.
Ray D.K., Mueller N.D., West P.C., Foley J.A.: Yield Trends Are Insufficient to Double Global Crop Production by 2050. – PLoS One. 8: 66428, 2013.
Rüdiger W.: Biosynthesis of chlorophyll b and the chlorophyll cycle. – Photosynth. Res. 74: 187– 193, 2002.
Sager J.C., McFarlane J.C.: Radiation. – Plant growth Chamb Handb 1–29. 1997.
Schoefs B.: The protochlorophyllide–chlorophyllide cycle. Photosynth Res. 70: 257–271. 2001
Seo T.S., Bai X., Ruparel H. et al.: Photocleavable fluorescent nucleotides for DNA sequencing on a chip constructed by site-specific coupling chemistry. – Proc. Natl. Acad. Sci. 101: 5488–5493, 2004.
Sheng Z., Lv Y., Li W. et al.: Phenotype and transcriptome analysis reveals chloroplast development and pigment biosynthesis together influenced the leaf color formation in mutants of Anthurium andraeanum ‘Sonate.’ – Plant Cell Physiol 5: 1– 14, 2015.
Shi L.X., Hall M., Funk C., Schröder W.P.: Photosystem II, a growing complex: Updates on newly discovered components and low molecular mass proteins. Biochim. Biophys. Acta. – Bioenerg. 1817: 13– 25, 2012.
Shimoda Y., Ito H., Tanaka A.: Conversion of chlorophyll b to chlorophyll a precedes magnesium dechelation for protection against necrosis in Arabidopsis. Plant. J. 72: 501– 511, 2012.
Spurr A.R.: A low-viscosity epoxy resin embedding medium for electron microscopy. – J. Ultrastruct. Res. 26: 31– 43, 1969.
Standfuss J., Terwisscha van Scheltinga A.C., Lamborghini M., Kühlbrandt W.: Mechanisms of photoprotection and nonphotochemical quenching in pea light-harvesting complex at 2.5 Å resolution. – EMBO. J. 24: 919–928, 2005.
Tanaka A., Ito H., Tanaka R. et al: Chlorophyll a Oxygenase (CAO) is Involved in Chlorophyll b Formation from Chlorophyll a. 1998
Terao T., Yamashita A., Katoh S.: Chlorophyll b-deficient mutants of rice: I. Absorption and fluorescence spectra and chlorophyll a/b ratios. – Plant Cell Physiol. 26: 1361-1367, 1985.
Tomitani A., Okada K., Miyashita H. et al.: Chlorophyll b and phycobilins in the common ancestor of cyanobacteria and chloroplasts. – Nature. 400:159– 162, 1999.
Voitsekhovskaja O.V., Tyutereva E.V.: Chlorophyll b in angiosperms: Functions in photosynthesis, signaling and ontogenetic regulation. – J Plant Physiol. 189: 51– 64, 2015.
Von Wettstein D., Gough S., Kannangara C.G.: Chlorophyll biosynthesis. – Plant Cell. 7: 1039, 1995.
Wang Z., Gerstein M., Snyder M.: RNA-Seq: a revolutionary tool for transcriptomics. – Nat. Rev.Genet. 10: 57, 2009.
Warren M.J, Cooper J.B, Wood S.P, Shoolingin-Jordan P.M.: Lead poisoning, haem synthesis and 5-aminolaevulinic acid dehydratase. – Trends Biochem. Sci. 23:217–221, 1998.
Wu Z., Zhang X., He B. et al.: A chlorophyll-deficient rice mutant with impaired chlorophyllide esterification in chlorophyll biosynthesis. – Plant Physiol. 145: 29 –40, 2007.
Wu Z.M., Zhang X., Wang J.L., Wan J.M.: Leaf chloroplast ultrastructure and photosynthetic properties of a chlorophyll-deficient mutant of rice. – Photosynthetica. 52: 217– 222, 2014.
Yamazaki J.: Changes in the photosynthetic characteristics and photosystem stoichiometries in wt and Chl b-deficient mutant rice seedlings under various irradiances. – Photosynthetica. 48: 521–529, 2010.
Yang C.M., Chang K.W., Yin M.H., et al.: Method for the determination of the chlorophylls and their derivatives. – Taiwania. 43: 116- 122, 1998.
Yang C.M., Chen H.Y.: Grana stacking is normal in a chlorophyll-deficient LT8 mutant of rice. – Bot. Bull. Acad. Sin. 37: 31–34. 1996.
Yang H.Y., Xia X.W., Fang W. et al.: Identification of genes involved in spontaneous leaf color variation in Pseudosasa japonica. – Genet. Mol. Res. 14: 11827-11840, 2015.
Zhao X., Chen T., Feng B. et al.: Non-photochemical quenching plays a key role in light acclimation of rice plants differing in leaf color. – Front Plant Sci. 7: 1968, 2017.
Zhao X., Nishimura Y., Fukumoto Y., Li J.: Effect of high temperature on active oxygen species, senescence and photosynthetic properties in cucumber leaves. – Environ Exp Bot. 70: 212- 216, 2011.
Zhu H., Zhou Y., Zhai H. et al.: Transcriptome profiling reveals insights into the molecular mechanism of drought tolerance in sweetpotato. – J. Integr. Agric 18: 9– 23, 2019.
Zhu X.G., Long S.P., Ort D.R.: Improving Photosynthetic Efficiency for Greater Yield. – Annu. Rev. Plant. Biol. 61: 235– 261, 2010.
CHAPTER 5
Allakhverdiev S.I., Kreslavski V.D., Klimov V.V., Los D.A., Carpentier R., Mohanty P.: Heat stress: an overview of molecular responses in photosynthesis. - Photosynthesis Research. 98: 541, 2008.
Allen D.J., Ort D.R.: Impacts of chilling temperatures on photosynthesis in warm-climate plants. - Trends in Plant Science. 6: 36–42, 2001.
Allen K.D., Duysen M.E., Staehelin L.A.: Biogenesis of thylakoid membranes is controlled by light intensity in the conditional chlorophyll b-deficient CD3 mutant of wheat. - The Journal of Cell Biology. 107:907, 1988.
Aro E.M., Virgin I., Andersson B.: Photoinhibition of photosystem II. Inactivation, protein damage and turnover. - Biochimica et Biophysica Acta (BBA). Bioenergetics. 1143: 113–134, 1993.
Bellemare G., Bartlett S.G., Chua N.H.: Biosynthesis of chlorophyll a/b-binding polypeptides in wild type and the chlorina f2 mutant of Barley. - Journal of Biological Chemistry. 257: 7762–7767, 1982.
Berry J., Bjorkman O.: Photosynthetic response and adaptation to temperature in higher plants. - Annual Review of Plant Physiology. 31: 491–543, 1980).
Bilska A., Sowiński P.: Closure of plasmodesmata in maize (Zea mays) at low temperature: a new mechanism for inhibition of photosynthesis. - Annals of Botany. 106: 675–686, 2010).
Bukhov N.G., Carpentier R.: Heterogeneity of photosystem II reaction centers as influenced by heat treatment of barley leaves. - Physiologia Plantarum. 110: 279–285, 2000.
Chaves M.M., Flexas J., Pinheiro C.: Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. - Annals of Botany. 103: 551–560, 2009.
Cheng X.X., Yu M., Zhang N., Zhou Z.Q., Xu Q.T., Mei F.Z., Qu L.H.: Reactive oxygen species regulate programmed cell death progress of endosperm in winter wheat (Triticum aestivum L.) under waterlogging. – Protoplasma. 253: 311–327, 2016.
Cruz R. Pda., Sperotto R.A., Cargnelutti D., Adamski J.M., de FreitasTerra T., Fett J.P.: Avoiding damage and achieving cold tolerance in rice plants. Food and Energy Security. 2: 96–119, 2013.
Ding Y., Shi Y., Yang S.: Molecular regulation of plant responses to environmental temperatures. - Molecular Plant. 13: 544–564, 2020.
Eckhardt U., Grimm B., Hörtensteiner S.: Recent advances in chlorophyll biosynthesis and breakdown in higher plants. - Plant Molecular Biology. 56: 1–14, 2004.
Fahad S., Adnan M., Hassan S., Saud S., Hussain S., Wu C., Huang J.: Rice responses and tolerance to high temperature, 2018.
Fromme P., Melkozernov A., Jordan P., Krauss N.: Structure and function of photosystem I: interaction with its soluble electron carriers and external antenna systems. - FEBS Letters. 555: 40–44, 2003.
Gounaris K., Brain A.R.R., Quinn P., Williams W.P.: Structural reorganisation of chloroplast thylakoid membranes in response to heat-stress. - Biochimica et Biophysica Acta (BBA). Bioenergetics. 766: 198–208, 1984.
Gounaris K., Brain A.P.R., Quinn P.J., Williams W.P.: Structural and functional changes associated with heat-induced phase-separations of non-bilayer lipids in chloroplast thylakoid membranes. - FEBS Letters. 153: 47–52, 1983.
Greene B.A., Allred D.R., Morishige D.T., Staehelin L.A.: Hierarchical response of light harvesting chlorophyll-proteins in a light-sensitive chlorophyll b-deficient mutant of maize. - Plant Physiology. 87: 357–364, 1988.
HassanI: Effects of O3 and drought stress on growth, yield and physiology of tomatoes (Lycopersicon esculentum Mill. Cv Baladey). – Gartenbauwiessenschaft. 76: 122–135, 1999.
Havaux M.,Tardy F.: Thermostability and photostability of photosystem ii in leaves of the chlorina-f2 barley mutant deficient in light-harvesting chlorophyll a/b protein complexes. - Plant Physiology. 113: 913–923, 1997.
Havaux M., Tardy F.: Temperature-dependent adjustment of the thermal stability of photosystem II in vivo: possible involvement of xanthophyll-cycle pigments. – Planta. 198: 324–333, 1996.
Hopkins W.G., Hayden D.B., Neuffer M.G.: A light-sensitive mutant in maize (Zea mays L.) I. Chlorophyll, chlorophyll-protein and ultrastructural studies. - Zeitschrift Für Pflanzenphysiologie. 99: 417–426, 1980.
Horie T.: Global warming and rice production in Asia: modeling, impact prediction and adaptation. Proceedings of the Japan Academy. Series B. 95: 211–245, 2019.
Hu S., Ding Y., Zhu C.: Sensitivity and responses of chloroplasts to heat stress in plants. -Frontiers in Plant Science. 11: 375, 2020.
Huang J., Qin F., Zang G., Kang Z., Zou H., Hu F., Yue C., Li X., Wang G.: Mutation of OsDET1 increases chlorophyll content in rice. - Plant Sci. 210: 241–249, 2013.
Huang S., Liu Z., Li D., Yao R., Meng Q., Feng H.: Screening of Chinese cabbage mutants produced by 60Co γ-ray mutagenesis of isolated microspore cultures. - Plant Breeding. 133: 480–488, 2014.
Kadam N.N., Xiao G., Melgar R.J., Bahuguna R.N., Quinones C., Tamilselvan A., Jagadish K.S.V.: Agronomic and physiological responses to high temperature, drought, and elevated CO2 interactions in cereals. - Advances in Agronomy. 127: 111-156, 2014.
Klimov V., Baranov S., Allakhverdiev S.: Bicarbonate protects the donor side of photosystem II against photoinhibition and thermoinactivation. - FEBS Letters. 418: 243–246, 1998.
Lai Y.C., Wang S.Y., Gao H.Y., Nguyen K.M., Nguyen C.H., Shih M.C., Lin K.H.: Physicochemical properties of starches and expression and activity of starch biosynthesis-related genes in sweet potatoes. Food Chem. - 199: 556–564, 2016.
Landi M., Zivcak M., Sytar O., Brestic M., Allakhverdiev S.I.: Plasticity of photosynthetic processes and the accumulation of secondary metabolites in plants in response to monochromatic light environments: A review. - Biochim Biophys Acta. Bioenerg 1861: 14813, 2020.
Lawlor D.W., Tezara W.: Causes of decreased photosynthetic rate and metabolic capacity in water-deficient leaf cells: a critical evaluation of mechanisms and integration of processes. - Ann Bot. 103: 561–579, 2009.
Lin Y.H., Pan K.Y., Hung C.H., Huang H.E., Chen C.L., Feng T.Y., Huang L.F.: Overexpression of ferredoxin, PETF, enhances tolerance to heat stress in Chlamydomonas reinhardtii. International Journal of Molecular Sciences. 14: 20913–20929, 2013.
Liu R., Dong X., Gu W., Yu L., Jin W., Qu Y., Li W.: Variation in the phenotypic features and transcripts of thermo-sensitive leaf-color mutant induced by carbon ion beam in Green wandering jew (Tradescantia fluminensis). - Scientia Horticulturae. 213: 303–313, 2016.
Liu W., Fu Y., Hu G., Si H., Zhu L., Wu C., Sun Z.: Identification and fine mapping of a thermo-sensitive chlorophyll deficient mutant in rice (Oryza sativa L .). – Planta. 226: 785–795, 2007.
Markwell J., Osterman J.C.: Occurrence of temperature-sensitive phenotypic plasticity in chlorophyll-deficient mutants of Arabidopsis thalianal. Plant Physiology. 98: 392–394, 1992.
Markwell J.P., Danko S.J., Bauwe H., Osterman J., Gorz H.J., Haskins F.A.: A temperature-sensitive chlorophyll b-deficient mutant of sweetclover (Melilotus alba). Plant Physiology. 81: 329–334, 1986.
Masuda T., Fujita Y.: Regulation and evolution of chlorophyll metabolism. Photochemical & Photobiological Sciences. 7: 1131–1149, 2008.
Michel H., Tellenbach M., Boschetti A.: A chlorophyll b-less mutant of Chlamydomonas reinhardii lacking in the light-harvesting chlorophyll ab-protein complex but not in its apoproteins. - Biochimica et Biophysica Acta. Bioenergetics. 725: 417–424, 1983.
Mohanty P., Allakhverdiev S., Murata N.: Application of low temperature during photoinhibition allows characterization of individual steps in photodamage and repair of photosystem II. - Photosynthesis Research. 94: 217–224, 2007.
Murakami Y., Tsuyama M., Kobayashi Y., Kodama H., Iba K.: Trienoic fatty acids and plant tolerance of high temperature. – Science. 287: 476–479, 2000.
Murata N., Takahashi S., Nishiyama Y., Allakhverdiev S.I.: Photoinhibition of photosystem II under environmental stress. - Biochimica et Biophysica Acta (BBA). Bioenergetics 1767: 414–421, 2007.
Nakashima K., Tran L.P., Van Nguyen D., Fujita M., Maruyama K., Todaka D., Ito Y., Hayashi N., Shinozaki K., Yamaguchi-Shinozaki K.: Functional analysis of a NAC‐type transcription factor OsNAC6 involved in abiotic and biotic stress‐responsive gene expression in rice. Plant J. 51: 617–630, 2007.
Nakatani H.Y., Baliga V.: A clover mutant lacking the chlorophyll a- and b-containing protein antenna complexes. - Biochemical and Biophysical Research Communications. 131: 182–189, 1985.
Nguyen M.K., Shih T.H., Lin S.H., Huang W.D., Yang C.M.: Transcription analysis of chlorophyll biosynthesis in wild-type and chlorophyll b-lacking rice (Oryza sativa L.). Photosynthetica. 58: 702–711, 2020.
Nishiyama Y., Allakhverdiev S.I., Murata N.: Inhibition of the repair of Photosystem II by oxidative stress in cyanobacteria. Photosynthesis Research. 84: 1–7, 2005.
Ouijja A., Farineau N., Cantrel C., Guillot-Salomon T.: Biochemical analysis and photosynthetic activity of chloroplasts and Photosystem II particles from a barley mutant lacking chlorophyll b. - Biochimica et Biophysica Acta (BBA). Bioenergetics 932: 97–106, 1988.
Petrov K., Lyubov V., Dudareva L., Nokhsorov V., Perk A., Chepalov V., Zulfugarov I.: The role of plant fatty acids in regulation of the adaptation of organisms to the cold climate in cryolithic zone of yakutia. Journal of Life Science. 26: 519–530, 2016.
Poorter H.: Larcher, W. Physiological plant ecology. 4th edn. - Annals of Botany. 93: 616–617, 2004.
Qiu Z., Kang S., He L., Zhao J., Zhang S., Hu J., Zhu L.: The newly identified heat-stress sensitive albino 1 gene affects chloroplast development in rice. - Plant Science. 267: 168–179, 2018.
Raison J.K., Roberts J.K.M., Berry J.A.: Correlations between the thermal stability of chloroplast (thylakoid) membranes and the composition and fluidity of their polar lipids upon acclimation of the higher plant, Nerium oleander, to growth temperature. - Biochimica et Biophysica Acta (BBA). Biomembranes 688:218–228, 1982.
Raza A., Razzaq A., Mehmood S.S., Zou X., Zhang X., Lv Y., Xu J.: Impact of climate change on crops adaptation and strategies to tackle its outcome: A review. – Plants. 8: 34, 2019.
Rüdiger W.: Chlorophyll metabolism: From outer space down to the molecular level. -Phytochemistry. 46: 1151–1167, 1997.
Salvucci M.E., Crafts-Brandner S.J.: Relationship between the heat tolerance of photosynthesis and the thermal stability of rubisco activase in plants from contrasting thermal environments. Plant Physiology. 134: 1460–1470, 2004.
Sassa S.: Delta-Aminolevulinic acid dehydratase assay. Enzyme. 28: 133–145, 1982.
Semenova G.A.: Structural reorganization of thylakoid systems in response to heat treatment. Photosynthetica. 42: 521–527, 2004.
Shangguan Z., Shao M., Dyckmans J.: Interaction of osmotic adjustment and photosynthesis in winter wheat under soil drought. - Journal of Plant Physiology. 154: 753–758, 1999.
Sharkey T.D.: Effects of moderate heat stress on photosynthesis: importance of thylakoid reactions, rubisco deactivation, reactive oxygen species, and thermotolerance provided by isoprene. - Plant, Cell & Environment. 28: 269–277, 2005.
Soda N., Gupta B.K., Anwar K., Sharan A., Govindjee, Singla-Pareek S.L., Pareek A.: Rice intermediate filament, OsIF, stabilizes photosynthetic machinery and yield under salinity and heat stress. - Scientific Reports. 8: 4072, 2018.
Strzałka K., Kostecka-Gugała A., Latowski D.: Carotenoids and environmental stress in plants: significance of carotenoid-mediated modulation of membrane physical properties. - Russian Journal of Plant Physiology. 50: 168–173, 2003.
Terao T., Yamashita A., Katoh S.: Chlorophyll b-deficient mutants of rice. 1. Absorption and fluorescence spectra and chlorophyll a/b ratios. - Plant and Cell Physiology. 26: 1361–1367, 1985.
Verkamp E., Jahn M., Jahn D., Kumar A., Soll D.: Glutamyl-tRNA reductase from Escherichia coli and Synechocystis 6803: Gene structure and expression. Journal of Biological Chemistry. 267: 8275–8280, 1992.
Voitsekhovskaja O.V, Tyutereva E.V: Chlorophyll b in angiosperms: Functions in photosynthesis, signaling and ontogenetic regulation. - Journal of Plant Physiology. 189: 51–64, 2015.
Wahid A., Gelani S., Ashraf M., Foolad M.R.: Heat tolerance in plants: an overview. -Environmental and Experimental Botany. 61: 199–223, 2007.
Wood W.H.J., Barnett S.F.H., Flannery S., Hunter C.N., Johnson M.P.: Dynamic thylakoid stacking is regulated by LHCII phosphorylation but not its interaction with PSI. - Plant Physiology. 180: 2152–2166, 2019.
Xie G., Kato H., Sasaki K., Imai R.: A cold-induced thioredoxin h of rice, OsTrx23, negatively regulates kinase activities of OsMPK3 and OsMPK6 in vitro. - FEBS Letters. 583: 2734–2738, 2009.
Xin C., Hou R., Wu F., Zhao Y., Xiao H., Si W., Guo J.: Analysis of cytosine methylation status in potato by methylation-sensitive amplified polymorphisms under low-temperature stress. - Journal of Plant Biology. 58: 383–390, 2015.
Yamamoto Y., Aminaka R., Yoshioka M., Khatoon M., Komayama K., Takenaka D., Yamamoto Y.: Quality control of photosystem II: impact of light and heat stresses. - Photosynthesis Research. 98: 589–608, 2008.
Yamane Y., Kashino Y., Koike H., Satoh K.: Effects of high temperatures on the photosynthetic systems in spinach: oxygen-evolving activities, fluorescence characteristics and the denaturation process. - Photosynthesis Research. 57: 51–59, 1998. 9
Yang C.M., Osterman J.C., Markwell J.: Temperature sensitivity as a general phenomenon in a collection of chlorophyll-deficient mutants of sweetclover (Melilotus alba). Biochemical Genetics. 28: 31–40, 1990.
Yang H.Y., Xia X.W., Fang W., Fu Y., An M.M., Zhou M.B.: Identification of genes involved in spontaneous leaf color variation in Pseudosasa japonica. Genetics and Molecular Research. 14: 11827–11840, 2015a.
Yang Y., Chen X., Xu B., Li Y., Ma Y., Wang G.: Phenotype and transcriptome analysis reveals chloroplast development and pigment biosynthesis together influenced the leaf color formation in mutants of Anthurium andraeanum ‘Sonate.’ - Frontiers in Plant Science. 6: 139, 2015b.
YordanovI, Velikova V., Tsonev T.: Influence of drought, high temperature, and carbamide cytokinin 4-pu-30 on photosynthetic activity of bean plants. 1. Changes in chlorophyll fluorescence quenching. - Photosynthetica 37: 447–457, 1999.
Yu H.D., Yang X.F., Chen S.T., Wang Y.T., Li J.K., Shen Q., Guo F.Q.: Downregulation of chloroplast RPS1 negatively modulates nuclear heat-responsive expression of HsfA2 and its target genes in Arabidopsis. - PLOS Genetics. 8: e1002669, 2012.
Zhao A., Fang Y., Chen X., Zhao S., Dong W., Lin Y., Gong W., Liu L.: Crystal structure of <em>Arabidopsis</em> glutamyl-tRNA reductase in complex with its stimulator protein. - Proc Natl Acad Sci. 111: 6630–6635, 2014.
Zhao X., Nishimura Y., Fukumoto Y., Li J.: Effect of high temperature on active oxygen species, senescence and photosynthetic properties in cucumber leaves. - Environ Exp Bot. 70: 212–216, 2011.
Zhu J.K.: Abiotic stress signaling and responses in plants. – Cell. 167: 313–324, 2016.
CHAPTER 6
Allen K.D., Duysen M.E., Staehelin L.A.: Biogenesis of thylakoid membranes is controlled by light intensity in the conditional chlorophyll b-deficient CD3 mutant of wheat. - Journal of Cell Biology. 107: 907, 1988.
Anderson J.M.: Photoregulation of the composition, function, and structure of thylakoid membranes. - Annual Review of Plant Physiology. 37: 93–136, 1986.
Baroli I., Melis A.: Photoinhibitory damage is modulated by the rate of photosynthesis and by the photosystem II light-harvesting chlorophyll antenna size. – Planta. 205: 288–296, 1998.
Beneragama C., Goto K.: Chlorophyll a:b ratio increases under low-light in “Shade-tolerant” Euglena gracilis. - Tropical Agricultural Research. 22: 12–25, 2011.
Blankenship R.E.: Photosynthetic Pigments: Structure and Spectroscopy. In: Molecular mechanisms of photosynthesis. - John Wiley & Sons, USA. 41-58, 2002.
Bujaldon S., Kodama N., Rappaport F., Subramanyam R., de Vitry C., Takahashi Y., Wollman F.A.: Functional accumulation of antenna proteins in chlorophyll b-less mutants of Chlamydomonas reinhardtii. - Molecular Plant. 10: 115–130, 2017.
Chen X., Zhang W., Xie Y., Lu W., Zhang R.: Comparative proteomics of thylakoid membrane from a chlorophyll b-less rice mutant and its wild type. - Plant Science. 173: 397–407, 2007.
Chu P., Yan G.X., Yang Q., Zhai L.N., Zhang C., Zhang F.Q., Guan R.Z.: iTRAQ-based quantitative proteomics analysis of Brassica napus leaves reveals pathways associated with chlorophyll deficiency. - Journal of Proteomics. 113: 244–259, 2015.
Darkó É., Heydarizadeh P., Schoefs B., Sabzalian M.: Photosynthesis under artificial light: The shift in primary and secondary metabolism. - Philosophical Transactions of the Royal Society of London. Series B, Biological Science. 369: 20130243, 2014.
Eggink L.L., LoBrutto R., Brune D.C., Brusslan J., Yamasato A., Tanaka A.: Synthesis of chlorophyll b: localization of chlorophyllide a oxygenase and discovery of a stable radical in the catalytic subunit. - BMC Plant Biology. 4: 5, 2004.
Ghirardi M.L., Melis A.: Development of the light-aarvesting antenna of the photosystems in chlorophyll-b deficient mutants. - In: Biggins J (Ed). Progress in Photosynthesis Research. Springer. Dordrecht. 261–264, 1987.
Godfray H.C.J., Beddington J.R., Crute I.R., Haddad L., Lawrence D., Muir J.F., Toulmin C.: Food security: The challenge of feeding 9 billion people. - Science. 327: 812 – 818, 2010.
Greene B.A., Allred D.R., Morishige D.T., Staehelin L.A.: Hierarchical response of light harvesting chlorophyll-proteins in a light-sensitive chlorophyll b-deficient mutant of maize. - Plant Physiology. 87: 357–364, 1988.
Habash D.Z., Genty B., Baker N.R: The consequences of chlorophyll deficiency for photosynthetic light use efficiency in a single nuclear gene mutation of cowpea. - Photosynthesis Research. 42: 17–25, 1994.
Hamdani S., Khan N., Perveen S., Qu M., Jiang J., Govindjee, Zhu X.G.: Changes in the photosynthesis properties and photoprotection capacity in rice (Oryza sativa) grown under red, blue, or white light. - Photosynthesis Research. 139: 107–121, 2019.
Hopkins W.G., Hayden D.B., Neuffer M.G.: A light-sensitive mutant in maize (Zea mays L.) I. Chlorophyll, chlorophyll-protein and ultrastructural studies. - Zeitschrift für Pflanzenphysiologie. 99: 417–426, 1980.
Horie T.: Global warming and rice production in Asia: Modeling, impact prediction and adaptation. - Proceedings of the Japan Academy. Series B. 95: 211–245, 2019.
Horie Y. , Ito H, Kusaba M, Tanaka R, Tanaka A: Participation of chlorophyll b reductase in the initial step of the degradation of light-harvesting chlorophyll a/b-protein complexes in Arabidopsis. - Journal of Biological Chemistry. 284: 17449–17456, 2009.
Ito H, Ohtsuka T, Tanaka A.: Conversion of chlorophyll b to chlorophyll a via 7-hydroxymethyl chlorophyll. - Journal of Biological Chemistry. 271: 1475–1479, 1996.
Joshi P., Swami A.: Air pollution induced changes in the photosynthetic pigments of selected plant species. - Journal of Environmental Biology. 30: 295–298, 2009.
King J.: The genetic basis of plant physiological processes. - Oxford University Press, New York, 1991.
Kotzabasis K., Strasser B., Navakoudis E., Senger H., Dörnemann D.: The regulatory role of polyamines in structure and functioning of the photosynthetic apparatus during photoadaptation. - Journal of Photochemistry and Photobiology B: Biology. 50: 45–52, 1999.
Landi M., Zivcak M., Sytar O., Brestic M., Allakhverdiev S.I.: Plasticity of photosynthetic processes and the accumulation of secondary metabolites in plants in response to monochromatic light environments: A review. - Biochimica et Biophysica Acta.Bioenergetics. 1861: 148131, 2020.
Liu X., Sun L., Wu Q., Men X., Yao L., Xing S.: Transcriptome profile analysis reveals the ontogenesis of rooted chichi in Ginkgo biloba L. - Gene. 669: 8–14, 2018.
Lokstein H., Härtel H., Hoffmann P., Renger G.: Comparison of chlorophyll fluorescence quenching in leaves of wild-type with a chlorophyll-b-less mutant of barley (Hordeum vulgare L.). - Journal of Photochemistry and Photobiology B: Biology. 19: 217–225, 1993.
Markwell J., Osterman J.C.: Occurrence of temperature-sensitive phenotypic plasticity in chlorophyll-deficient mutants of Arabidopsis thaliana. - Plant Physiology. 98: 392–394, 1992.
Markwell J.P., Danko S.J., Bauwe H., Osterman J., Gorz H.J., Haskins F.: A Temperature-sensitive chlorophyll b-deficient mutant of sweetclover (Melilotus alba). - Plant Physiology. 81: 329–34, 1986.
Masuda T., Fujita Y.: Regulation and evolution of chlorophyll metabolism. - Photochemical and Photobiological Sciences. 7: 1131–1149, 2008.
McDonal M.S.: Photobiology of higher plants. John Wiley & Sons Ltd, England, 2003.
Murchie E., Horton P.: Contrasting patterns of photosynthetic acclimation to the light environment are dependent on the differential expression of the responses to irradiance and spectral quality. - Plant, Cell & Environment. 21: 139–148, 2002.
Johnson G.N., Scholes J.D., Horton P., Young A.J.: Relationships between carotenoid composition and growth habit in British plant species. Plant, Cell & Environment. 16: 681–686, 1993.
Nguyen M.K., Shih T.H., Lin S.H., Huang W.D., Yang C.M.: Transcription analysis of chlorophyll biosynthesis in wildtype and chlorophyll b-lacking rice (Oryza sativa L.). – Photosynthetica. 58: 702–711, 2020.
Okada K., Katoh S.: Two long-term effects of light that control the stability of proteins related to photosynthesis during senescence of rice leaves. - Plant and Cell Physiology. 39: 394–340, 1998.
Pattanayak G.K., Biswal A.K., Reddy V.S., Tripathy B.C.: Light-dependent regulation of chlorophyll b biosynthesis in chlorophyllide a oxygenase overexpressing tobacco plants. - Biochemical and Biophysical Research Communications. 326: 466–471, 2005.
Podar D.: Plant growth and cultivation. - Methods in Molecular Biology. 953: 23–45, 2013.
Razi Naqvi K., Melø T.B., Bangar Raju B.: Assaying the chromophore composition of photosynthetic systems by spectral reconstruction: application to the light-harvesting complex (LHC II) and the total pigment content of higher plants. - Spectrochim Acta Part A: Molecular and Biomolelcular Spectroscopy. 53: 2229–2234, 1997.
Robson T., Klem K., Urban O., Jansen M.: Re-interpreting plant morphological responses to UV-B radiation: Plant morphological responses to UV-B. - Plant, Cell & Environment. 38(5): 856-866, 2014.
Rosevear M.J., Young A.J., Johnson G.N.: Growth conditions are more important than species origin in determining leaf pigment content of British plant species. - Functional Ecology. 15: 474–480, 2001.
Sager J.C., McFarlane J.C.: Radiation. In: Langhans RW, Tibbitts TW (Eds). Plant Growth Chamber Handbook. - Iowa Agricultural and Home Economics Experiment Station, 1997.
Shevela D., Björn L., Govindjee G.: Photosynthesis: Solar Energy for Life. World Scientific, Singarpore, 2018.
Shimoda Y., Ito H., Tanaka A.: Conversion of chlorophyll b to chlorophyll a precedes magnesium dechelation for protection against necrosis in Arabidopsis. - Plant J. 72: 501–511, 2012.
Somerville CdR.: Analysis of photosynthesis with mutants of higher plants and algae. - Annual Review of Plant Physiology. 37: 467–506, 1986.
Spurr A.R.: A low-viscosity epoxy resin embedding medium for electron microscopy. -Journal of Ultrastructure Research. 26: 31-43, 1969.
Tanaka A., Tanaka R.: Chlorophyll metabolism. Current Opinion in Plant Biology. 9: 248–255, 2006.
Terao T., Katoh S.: Synthesis and breakdown of the apoproteins of light-harvesting chlorophyll a/b proteins in chlorophyll b-deficient mutants of rice. - Plant and Cell Physiology. 30: 571–580, 1989.
Terao T., Sonoike K., Yamazaki J.Y., Kamimura Y., Katoh S.: Stoichiometries of photosystem I and photosystem II in rice mutants differently deficient in chlorophyll b. - Plant and Cell Physiology. 37: 299–306, 1996.
Terao T., Yamashita A., Katoh S.: Chlorophyll b-deficient mutants of rice: II. Antenna chlorophyll a/b-Proteins of photosystem I and II. - Plant and Cell Physiology. 26: 1369–1377, 1985.
Terry M., Smith A.: A model for tetrapyrrole synthesis as the primary mechanism for plastid-to-nucleus signaling during chloroplast biogenesis. - Frontiers in Plant Science. 4: 14, 2013.
Verkamp E., Jahn M., Jahn D., Kumar A., Soll D.: Glutamyl-tRNA reductase from Escherichia coli and Synechocystis 6803: Gene structure and expression. - Journal of Biological Chemistry. 267: 8275–8280, 1992.
Wang L., Deng F., Ren W.J.: Shading tolerance in rice is related to better light harvesting and use efficiency and grain filling rate during grain filling period. - Field Crops Research. 180: 54–62, 2015.
Willows R.D., Hansson M.: Mechanism, structure, and regulation of magnesium chelatase. In: Kadish KM, Smith KM, Guilard R (Eds). - The porphyrin handbook: chlorophylls and bilins: biosynthesis, synthesis and degradation. Elsevier. 1-47, 2003.
Yamazaki J., Suzuki T., Maruta E., Kamimura Y.: The stoichiometry and antenna size of the two photosystems in marine green algae, Bryopsis maxima and Ulva pertusa, in relation to the light environment of their natural habitat. - Journal of Experimental Botany. 56: 1517–1523, 2005.
Yang C.M., Osterman J.C., Markwell J.: Temperature sensitivity as a general phenomenon in a collection of chlorophyll-deficient mutants of sweetclover (Melilotus alba). -Biochemical Genetics. 28: 31–40, 1990.
Zhu H., Zhow Y.Y., Zhai H.: Transcriptome profiling reveals insights into the molecular mechanism of drought tolerance in sweetpotato. - Journal of Integrative Agriculture. 18: 9–23, 2019.