簡易檢索 / 詳目顯示

研究生: 蔡馨嬅
H. H. Tsai
論文名稱: LixCoO2 單晶樣品之光譜性質研究
Optical studies of LixCoO2 single crystals
指導教授: 劉祥麟
Liu, Hsiang-Lin
學位類別: 碩士
Master
系所名稱: 物理學系
Department of Physics
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 84
中文關鍵詞: 鋰鈷氧拉曼光譜電子結構電荷有序性橢圓光譜
英文關鍵詞: LixCoO2, Raman spectra, electronic structure, charge ordering, ellipsometic spectra
論文種類: 學術論文
相關次數: 點閱:204下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 我們研究摻雜不同鋰離子濃度 LixCoO2 單晶樣品之橢圓偏光與拉曼散射光譜。Li0.33CoO2 室溫吸收光譜顯示 3 個吸收峰,其頻率位置分別約為 1.61 eV、3.35 eV 及 5.21 eV。前二者對應 Co3+ 電子由 t2g 躍遷到 eg 軌域,而後者則與電子由 O 2p 躍遷到 Co 3d 軌域有關。隨著鋰離子濃度增加,吸收峰頻率位置大致維持不變,但Li0.87CoO2吸收峰能量轉變為 3.08 eV、4.55 eV 及 5.76 eV,代表其電子結構產生變化。
    其次,Li0.33CoO2 室溫拉曼散射光譜具有 2 個拉曼活性振動模,其頻率位置約為 468 cm-1 ( Eg 對稱性 ) 和 568 cm-1 ( A1g 對稱性 ),分別對應氧原子沿著 ab 平面與 c 軸伸張振動。隨著鋰離子濃度增加,因 c 軸縮短,鍵能增加,故 A1g 拉曼峰展現藍移變化。我們另發現 Eg 拉曼峰的半高寬隨著鋰離子濃度增加而變大,這意味著晶格的無序度擴增。有趣地是,Li0.87CoO2 拉曼散射光譜展現兩個六方晶系結構相的共存,分別為第一六方晶系的 490 cm-1 ( Eg ) 和 598 cm-1 ( A1g ) 拉曼峰與第二六方晶系的 480 cm-1 ( Eg ) 和 570 cm-1 ( A1g ) 拉曼峰,此與之前文獻[J. Raman Spectrosc. 28, 613 (1997).] 的發表結果亦相符合。
    最後,當樣品降溫至 200 K 時,Li0.50CoO2 的 Eg 與 A1g 拉曼峰呈現異常藍移,此現象為反鐵磁相轉變所致,A1g 拉曼峰在 200 K 至 120 K 溫度區間卻轉變為紅移,其與 Co3+ 和 Co4+ 的電荷有序性排列有關。Li0.53CoO2 的 A1g 拉曼峰在 66 K 附近產生偏離藍移現象,推測亦與其反鐵磁相轉變有關。Li0.50CoO2 與Li0.53CoO2的高頻雙磁振子拉曼峰之半高寬在尼爾溫度附近變窄,暗指其反鐵磁有序性的相干長度變長。

    We present spectroscopic ellipsometry and Raman-scattering studies of LixCoO2 single crystals. Room-temperature optical absorption spectrum of Li0.33CoO2 shows three absorption peaks at about 1.61 eV, 3.35 eV, and 5.21 eV. The first two optical excitations near 1.61 eV and 3.35 eV are assigned as electronic transitions between the Co3+ t2g and eg orbitals. The last one near 5.21 eV is associated with charge-transfer transitions between the O 2p and Co 3d states. With increasing Li concentration, the positions of these three absorption peaks remain unchanged. However, the absorption peaks of Li0.87CoO2 shift to 3.08 eV, 4.55 eV, and 5.76 eV, indicating changes of its electronic structures.

    Room-temperature Raman-scattering spectrum of Li0.33CoO2 exhibits two phonon modes at about 468 and 568 cm-1, displaying symmetries of Eg and A1g that can be associated with Co-O stretching vibrations along the ab-plane and c axis, respectively. As the concentration of the Li ions increases, the Co-O bond energy strengthens which is caused by the contraction of c axis. As a result, the A1g phonon mode shows a blueshift. Furthermore, the linewidth of Eg phonon mode becomes broader, reflecting an increase of lattice disorder. Interestingly, Raman-scattering spectrum of Li0.87CoO2 shows the coexistence of two hexagonal phases. The phonon modes associated with the first hexagonal structure are observed at about 490 cm-1 (Eg) and 598 cm-1 (A1g), while the phonon modes related to the second hexagonal structure appears at about 480 cm-1 (Eg) and 570 cm-1 (A1g). These results are similar with the previous studies published in J. Raman Spectrosc. 28, 613 (1997).
    When the sample is cooled from 300 to 200 K, the Eg and A1g phonon modes of Li0.50CoO2 are found to exhibit anomalous hardening related to antiferromagnetic ordering. With further lowering temperature down to 120 K, the A1g phonon mode shows softening affected by charge ordering of Co3+ and Co4+ ions. The A1g phonon mode of Li0.53CoO2 also shows noticeable hardening with antiferromagnetic ordering at 66 K. Finally, the two-magnon excitation observed in Li0.50CoO2 and Li0.53CoO2 shows a narrowing of the resonance linewidth near the Neel temperature, indicating an increased antiferromagnetic correlation length.

    致謝 i 中文摘要 iii 英文摘要 v 目錄 vii 圖目錄 ix 表目錄 xiii 第一章 緒論 1 第二章 研究背景 5 第三章 實驗儀器設備與基本原理 16 3-1 光譜儀系統 16 3-2 光譜分析原理介紹 19 3-2-1 橢圓偏光光譜基本原理 19 3-2-2 拉曼散射基本原理 21 第四章 實驗樣品特性 28 4-1 樣品製程 28 4-2 樣品物性 29 第五章 實驗結果與討論 38 5-1 橢圓偏光光譜研究 38 5-2 拉曼散射光譜研究 39 第六章 結論與未來展望 78 參考文獻 81

    [1] 經濟部工業局,二次電池設計技術與應用,8 (2000)。
    [2] http://www.npf.org.tw/post/12/7873
    [3] http://ieknet.iek.org.tw/pubinfo-detail-publish.screen?domain=38&
    pubid=2715
    [4] W. D. Johnston, R. R. Heikes, and D. Sesteich, “The preparation, crystallography, and magnetic properties of the LixCo(1−x)O system”, J. Phys.: Chem. Solids 7, 1 (1958).
    [5] K. Mizushima, P. C. Jones, P. J. Wiseman, and J. B. Goodenough, “LixCoO2 (0 < x < +1): A new cathode material for batteries of high energy density”, Mat. Res. Bull. 15, 783 (1980).
    [6] T. Nagaura and K. Tozawa, “Lithium ion rechargable battery”, Progr. Batt. Solar Cells 9, 209 (1990).
    [7] J. N. Reimers and J. R. Dahn, “Electrochemical and in situ x-ray diffraction studies of lithium intercalation in LixCoO2”, J. Electrochem. Soc. 139, 2091 (1992).
    [8] M. Ménétrier, I. Saadoune, S. Levasseur, and C. Delmas, “The insulator-metal transition upon lithium deintercalation from LiCoO2 : electronic properties and 7 Li NMR study”, J. Mater. Chem. 9, 1135 (1999).
    [9] Y. Takahashi, Y. Gotoh, J. Akimoto, S. Mizuta, K. Tokiwa, and T. Watanabe, “Anisotropic electrical conductivity in LiCoO2 single crystal”, J. Solid State Chem. 164, 1 (2002).
    [10] X. Wang, I. Loa, K. Kunc, K. Syassen, and M. Amboage, “Effect of pressure on the structural properties and Raman modes of LiCoO2” ,Phys. Rev. B 72, 224102 (2005).
    [11] K. Mukai, Y. Ikedo, H. Nozaki, J. Sugiyama, K. Nishiyama, D. Andreica, A. Amato, P. L. Russo, E. J. Ansaldo, J. H. Brewer, K. H. Chow, K. Ariyoshi, and T. Ohzuku, “Magnetic phase diagram of layered cobalt dioxide LixCoO2”, Phys. Rev. Lett. 99, 087601 (2007).
    [12] T. Motohashi, T. Ono, Y. Sugimoto, Y. Masubuchi, S. Kikkawa, R. Kanno, M. Karppinen, and H. Yamauchi, “Electronic phase diagram of the layered cobalt oxide system LixCoO2 (0.0 ≤ x ≤ 1.0)”, Phys. Rev. B 80, 1651142 (2009).
    [13] A. Smekal, “The quantum theory of dispersion”, Naturwiss. 11, 873 (1923).
    [14] John R. Ferraro, Kazuo Nakamoto, and Chris W. Brown, “Introductory Raman spectroscopy”, 2nd edition, Academic Press (2002).
    [15] 陳炳州,以拉曼光譜研究由磁控濺鍍合併電子迴旋共振系統所成長的類鑽石薄膜,國立成功大學物理研究所碩士論文,91 年 7 月。
    [16] J. D. Jackson, Classical Electrodynamics, John Wiley & Sons, Inc. (1999).
    [17] 黃毓中,利用調制式橢圓偏光術於研究光學參數、薄膜厚度與光學性質,私立逢甲大學電子工程學系碩士論文,91 年 7 月。
    [18] 沈稚強,有機半導體薄膜之光譜性質研究,國立臺灣師範大學物理研究所碩士論文,96 年 6 月。
    [19] 歐陽宗煜,LixCoO2 單晶樣品之電化學製備與磁性研究,國立臺灣師範大學物理研究所碩士論文,99年6月。
    [20] T. Y. Ou-Yang, F.-T. Huang, G. J. Shu, W. L. Lee, M.-W. Chu, H. L. Liu, and F. C. Chou, “Electronic phase diagram of LixCoO2 revisited with potentiostatically deintercalated single crystals”, Phys. Rev. B 85, 035120 (2012).
    [21] Y. Shao-Horn, S. Levasseur, F. Weill, and C. Delmas, “Probing lithium and vacancy ordering in O3 layered LixCoO2 (x ≈ 0.5)”, J. Electrochem. Soc. 150, A366 (2003).
    [22] Y. Takahashi, N. Kijima, K. Tokiwa, T. Watanabe, and J. Akimoto, “Single-crystal synthesis, structure refinement and electrical properties of Li0.5CoO2”, J. Phys.: Condens. Matter 19, 436202 (2007).
    [23] M. L. Foo, Y. Wang, S. Watauchi, H. W. Zandbergen, T. He, R. J. Cava, and N. P. Ong, “Charge ordering, commensurability, and metallicity in the phase diagram of the layered NaxCoO2”, Phys. Rev. Lett. 92, 247001 (2004).
    [24] M. Catti, “Ab initio study of Li+ diffusion paths in the monoclinic Li0.5CoO2 intercalate”, Phys. Rev. B 61, 1795 (2000).
    [25] J. T. Hertz, Q. Huang, T. McQueen, T. Klimczuk, J. W. G. Bos, L. Viciu, and R. J. Cava, “Magnetism and structure of LixCoO2 and comparison to NaxCoO2”, Phys. Rev. B 77, 075119 (2008).
    [26] M. T. Czyżyk, R. Potze, and G. A. Sawatzky, “Band-theory description of high-energy spectroscopy and the electronic structure of LiCoO2”, Phys. Rev. B 46, 3729 (1992).
    [27] K. Kushida, and K. Kuriyama, “Optical absorption related to Co-3d bands in sol-gel grown LiCoO2 films”, Solid State Comm. 118, 615 (2001).
    [28] J. van Elp, J. L. Wieland, H. Eskes, P. Kuiper, G. A. Sawatzky, F. M. F. de Groot, and T. S. Tunner, “Electronic structure of CoO, Li-doped CoO, and LiCoO2”, Phys. Rev. B 44, 6090 (1991).
    [29] N. L. Wang, P. Zheng, D. Wu, and Y. C. Ma, “Infrared probe of the electronic structure and charge dynamics of Na0.7CoO2”, Phys. Rev. Lett. 93, 237007 (2004).
    [30] M. Inaba, Y. Todsuka, H. Yoshida, Y. Grincourt, A. Tasaka, Y. Tomida, and Z. Ogumi, “Raman spectra of LiCo1−yNiyO2”, Chem. Lett. 24, 889 (1995).
    [31] T. Ohzuku and A. Ueda, “Solid-state redox reactions of LiCoO2 (R m) for 4 volt secondary lithium cells”, J. Electrochem. Soc. 141, 2972 (1994).
    [32] M. Inaba, Y. Iriyama, Z. Ogumi, Y. Todzuka, and A. Tasaka, “Raman study of layered rock-salt LiCoO2 and its electrochemical lithium deintercalation”, J. Raman Spectrosc. 28, 613 (1997).
    [33] www.cryst.edu.es/rep/sam.htm
    [34] 程光煦,拉曼 布里淵散射,科學出版社,中華民國九十六年第二版。
    [35] D. N. Argyriou, H. N. Bordallo, B. J. Campbell, A. K. Cheetham, D. E. Cox, J. S. Garder, K. Hanif, A. dos Santos, and G. F. Strouse, “Charge ordering and phase competition in the layered perovskite LaSr2Mn2O7”, Phys. Rev. B 61, 15269 (2000).
    [36] V. Dediu, C. Ferdeghini, F. C. Matacotta, P. Nozar, and G. Ruani, “Jahn-Taller dynamics in charge-ordered manganites from Raman spectroscopy”, Phys. Rev. Lett. 19, 4489 (2000).
    [37] D. M. Sagar, D. Fausti, S. van Smaalen, and P. H. M. van Loosdrecht, “Raman signatures of charge ordering in K0.3WO3”, Phys. Rev. B 81,045124 (2010).

    下載圖示
    QR CODE