研究生: |
郭智瑋 Jr-Wei Guo |
---|---|
論文名稱: |
高精度管型線性馬達之摩擦分析及補償器設計 Friction analysis and compensator design for a high-precision tubular linear motor |
指導教授: |
陳美勇
Chen, Mei-Yung |
學位類別: |
碩士 Master |
系所名稱: |
機電工程學系 Department of Mechatronic Engineering |
論文出版年: | 2011 |
畢業學年度: | 99 |
語文別: | 中文 |
論文頁數: | 63 |
中文關鍵詞: | 管型線性馬達 、摩擦力 、適應控制 、模糊控制 、滑動觀測器 |
英文關鍵詞: | Tubular linear motor, Friction, Adaptive control, Fuzzy control, Sliding-mode observer |
論文種類: | 學術論文 |
相關次數: | 點閱:238 下載:28 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文研究之目的為設計並實現新型的高精密定位平台,並且針對摩擦力進行分析與補償器的設計。摩擦力為一種非常複雜的物理現象,會降低運動控制系統的定位精度與追蹤性能。
本論文所設計的實驗平台為單軸的定位平台,行程為210mm,平台整體為52920067mm3。為了減輕定位平台重量,平台機構採用鋁合金,傳動機構採用線性滑軌,致動器則使用管型線性馬達來驅動平台。
在摩擦力補償方面,我們首先建立與分析系統之動態模型,然後利用摩擦力模型或滑動觀測針對滑軌之摩擦力做估測,分別結合PID控制器、適應控制器或適應模糊控制器來對摩擦力進行補償,消除摩擦力對定位平台的影響,由模擬與實驗結果證明此系統為可行的。
The purpose of this paper is to design and achieve a high-precision positioning platform and design a compensator by analysis of friction. Friction is a very complex physical phenomenon. And it degrades the positioning accuracy and tracking performances of the system.
This paper proposes a single axle positioning platform which travel is 210mm, and its size is as compact as 52920067mm3.The subject organization of the platform adopts the aluminum alloy material, in order to lighten the weight of the localization platform, the guiding devices adopt the linear slide rail. X axle use a tubular linear motor to drive the platform.
Firstly, the plant and dynamic model are derived and analyzed. Next, The estimation of friction is used by friction model or sliding-mode observer combined with PID controller, adaptive controller, adaptive fuzzy controller to eliminate the effect of friction. From simulation and experiment results, possible implementation, and satisfactory performances, and have been demonstrated.
[1] A. Helouvry, B. P. Dupont and C. Canudas de Wit “A survey of models, analysis tools and compensation methods for the control of machines with friction,” Automatica, Vol. 30, No. 7, pp. 1083-1138. 1994.
[2] C. Canudas de Wit, H.Olsson, K. J. Astrom, and P. Lischinsky “A new model for control of systems with friction” IEEE transactions on automatic control, Vol. 40, pp. 419-425, 1995.
[3] C. I. Huang, and L. C. Fu “Adaptive approach to motion controller of linear induction motor with friction compensation” IEEE/ASME transactions on mechatronics, Vol. 12, No. 4, pp. 480-490, 2007.
[4] F. Cupertino, D. Naso, E. Minino, and B. Turchiano “Sliding-mode control with double boundary layer for robust compensation of payload mass and friction in linear motors” IEEE transactions on industry applications, Vol. 45, No. 5, pp. 1688-1696, 2009
[5] S. L. Chen, K. K. Tan, S. Huang, and C. S. Teo “Modeling and compensation of ripples and friction in permanent-magnet linear motor using a hysteretic relay,” IEEE transactions on mechatronics, Vol. 15, No. 4, pp. 586-594, 2010
[6] A. Amthor, S. Zschaeck, and C. Ament “High precision position control using an adaptive friction compensation approach” IEEE transactions on automatic control, Vo1.55, No 1, pp. 274-278, 2010.
[7] T. H. Lee, K. K. Tan, and S. Huang “Adaptive friction compensation with dynamic friction model,” IEEE/ASME transactions on mechatronics, Vol. 16, No. 1, pp. 133-140, 2011.
[8] http://www.hiwin.com.tw/
[9] 韓曾晉編著,「適應控制系統-Control Systems of Adaptive」,科技圖書股份有限公司,37~346頁,民國八十一年六月初版。
[10] S. Peng and S. Shyh-Pyng,“Robust H∞ control for linear discrete-time systems with norm-bounded nonlinear uncertainties, ” IEEE transactions on automatic control, Vol. 44, pp. 108-111, 1999.
[11] 陳永平、張浚林編著,「可變結構控制設計」,全華科技圖書股份有限公司,1-1~8-52頁,民國九十一年九月二版。
[12] D. G. Ren and D. Howe, “Robust magnetic bearing control via eigenstructure assignment dynamical compensation,” IEEE transactions on control systems technology, Vol. 11, pp. 204-215, 2003.
[13] H. S. Kyung and R. Langari, “Robust fuzzy control of a magnetic bearing system subject to harmonic disturbances,”IEEE transactions on control systems technology, Vol. 8, pp. 366-371, 2000.
[14] K. H. Ang, G. Chong, and Y. Li, “PID control system analysis, design, and technology,” IEEE transactions on control systems technology, Vol. 13, no. 4, 2005.
[15] J. C. Basilio and S. R. Matos, “Design of PI and PID controllers with transient performance specification,” IEEE transactions on Education, Vol. 45, no. 4, 2002.
[16] J. Jacques, E. Slotine, and W. Li, Applied nonlinear control, Prentice Hall, 1990.
[17]M. Y. Chen and C. H. Jou, “Design and control for a 2-DOF high- precision positioning platform using electrical-magnetic device,” 碩士論文,國立台灣師範大學2008.
[18] L. X. Wang, “Stable adaptive fuzzy control of nonlinear systems,” IEEE transactions on fuzzy system, Vol. 1, no. 2, pp. 146-155, 1993.
[19] C.C. Lee, “Fuzzy logic in control systems: fuzzy logic controller, parts I and II,” IEEE transactions on systems, Vol. 20, no. 2, pp. 404-435, 1990.
[20] L. X. Wang and J. M. Mendel, “Fuzzy basis functions universal approximation, and orthogonal least squares learning,” IEEE transactions on neural network, Vol. 3, no. 5, pp. 807-814, 1992.