研究生: |
張元儒 Chang, Yuan-Ju |
---|---|
論文名稱: |
掃描穿隧顯微術探究鐵誘導三溴化鉻表面形貌及電子特性的影響 Probing the Effects of Iron Deposition on the Surface Structure and Electrical Properties of CrBr3 by STM/S |
指導教授: |
傅祖怡
Fu, Tsu-Yi |
口試委員: |
傅祖怡
Fu, Tsu-Yi 陳瑞山 Chen, Ruei-San 黃英碩 Hwang, Ing-Shouh |
口試日期: | 2023/06/29 |
學位類別: |
碩士 Master |
系所名稱: |
物理學系 Department of Physics |
論文出版年: | 2023 |
畢業學年度: | 111 |
語文別: | 中文 |
論文頁數: | 73 |
中文關鍵詞: | 掃描穿隧顯微鏡 、掃描穿隧能譜術 、三溴化鉻 、蒸鍍 、半金屬 |
英文關鍵詞: | STM, STS, Chromium Tribromide (CrBr3), evaporation, semimetal |
研究方法: | 實驗設計法 |
DOI URL: | http://doi.org/10.6345/NTNU202300741 |
論文種類: | 學術論文 |
相關次數: | 點閱:81 下載:8 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
三溴化鉻(CrBr3)是著名的磁性材料,雖然磁性特性已被研究許久,但相關的表面形態與電子特性尚未完備,是近期研究的新方向。因鉻原子帶有磁性,即使三溴化鉻限縮成二維尺度仍具有穩定的鐵磁性。但是此材料的居禮溫度遠低於室溫,侷限了材料在電子元件上的發展。若能在不破壞材料磁性的條件下增高居禮溫度將必廣泛應用於各領域,這表示摻雜金屬元素形成的異質結構有望改善此限制。因此本研究利用機械剝離法與乾式轉移法製備CrBr3/HOPG異質結構,並利用掃描穿隧顯微鏡(STM)技術探究鐵誘導的三溴化鉻表面形貌以及利用掃描穿隧能譜(STS)研究電性變化。研究結果顯示三溴化鉻的形貌可區分成三種:片狀、層狀與團狀,包括單層到10層的厚度。而我們發現鍍鐵後的平臺表面出現許多2~3 nm寬的不規則紋路,且原子結構變得相當清晰,掃描穿隧顯微鏡能探測到上層與底層的溴原子以及中間層的鉻原子所形成的六邊形。在電性方面,鍍鐵造成相當大的差異,三溴化鉻的能帶間隙從1.837±0.058 eV降至0.148±0.024 eV,代表鐵原子促使屬於半導體的三溴化鉻轉變成半金屬;同時,鍍鐵前後的費米能階(EF)皆偏向價帶,具有P型半導體的性質。根據實驗結果,我們的研究支持密度泛函理論對於三溴化鉻電子特性的預測,為三溴化鉻在自旋電子學領域的研究開啟新頁。
Chromium Tribromide (CrBr3) is a well-known magnetic material. While its magnetic properties have been extensively studied, there is a lack of comprehensive understanding about its surface morphology and electronic properties. Due to the magnetic nature of chromium atoms, CrBr3 exhibits stable ferromagnetism even confined to a two-dimensional scale. However, its Curie temperature is lower than room temperature, which limits its potential applications in electronic devices. Increasing the Curie temperature without destroying its magnetization would be useful in various fields. One possible solution to overcome this limitation is to introduce heterostructure by incorporating metallic elements through doping. In this study, we prepared CrBr3/HOPG heterostructure by mechanical exfoliation and dry transfer techniques. We investigate the iron-induced surface morphology with Scanning Tunneling Microscopy (STM) and study its electrical characteristics with Scanning Tunneling Spectroscopy (STS). The results revealed three morphologies of CrBr3, including flakes, layers, and clusters, ranging from monolayer to 10-layer thickness. After iron deposition, we observed numerous irregular patterns with widths of 2 ~ 3 nm on the platform surface, and the atomic structure became highly resolved. We can detect both top-layer and bottom-layer bromine atoms and the hexagonal arrangements formed by intermediate-layer chromium atoms. In terms of electrical properties, iron deposition caused significant changes. The energy band gap of CrBr3 decreased abruptly from 1.837±0.058 eV to 0.148±0.024 eV, indicating that iron atoms induced a transition from semiconductor to semimetal. In addition, Fermi energy level (EF) shifted towards valance band in two situations, exhibiting properties of a p-type semiconductor. Based on the experimental results, our research supports the predictions of density functional theory in describing the electronic properties of CrBr3. This opens up new avenues for the study of CrBr3 in the field of spintronics.
[1] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva and A. A. Firsov. (2004) Electric field effect in atomically thin carbon films. Science, (New York, N.Y.), 306(5696), 666–669. https://doi.org/10.1126/science.1102896
[2] Xiaohui Hu, et al. (2018)1T phase as an efficient hole injection layer to TMDs transistors: a universal approach to achieve p-type contacts 2D Mater.5, 031012
[3] Xiaohui H., Torbjörn B., Harri L., Litao S., et al. (2015). Solubility of Boron, Carbon, and Nitrogen in Transition Metals: Getting Insight into Trends from First-Principles Calculations J. Phys. Chem. Lett., 6, 16, 3263–32686
[4] A. K. Patel and B. P. Pandey. (2020) "Performance Analysis of WS2 TMD Material as an Absorber layer used in Solar Cell," 2020 International Conference on Electrical and Electronics Engineering (ICE3), Gorakhpur, India, pp. 382-384, doi: 10.1109/ICE348803.2020.9122856.
[5] K. S. Novoselov et al. ,(2016), 2D materials and van der Waals heterostructures. Science 353, aac9439. DOI:10.1126/science.aac9439
[6] Geim, A. K., & Grigorieva, I. V. (2013). Van der Waals heterostructures. Nature, 499(7459), 419–425. https://doi.org/10.1038/nature12385
[7] Fiori, G., Bonaccorso, F., Iannaccone, G., Palacios, T., Neumaier, D., Seabaugh, A., Banerjee, S. K., & Colombo, L. (2014). Electronics based on two-dimensional materials. Nature nanotechnology, 9(10), 768–779. https://doi.org/10.1038/nnano.2014.207
[8] Pulickel Ajayan, Philip Kim, Kaustav Banerjee. (2016) Two-dimensional van der Waals materials. Physics Today 69 (9): 38–44. https://doi.org/10.1063/PT.3.3297
[9] Matthew J., David G., Nick, Mingwei, et al. (2020) Atomic Resolution Imaging of CrBr3 Using Adhesion-Enhanced Grids. Nano Letters 20 (9), 6582-6589. DOI: 10.1021/acs.nanolett.0c02346
[10] Haodong Wang, et al. (2022) Magnetic Phase Transition in Two-Dimensional CrBr3 Probed by a Quantum Sensor. Chinese Phys. Lett. 39 047601. DOI 10.1088/0256-307X/39/4/047601
[11] D. Soriano, M. I. Katsnelson, and J. Fernández-Rossier. (2020) Magnetic Two-Dimensional Chromium Trihalides: A Theoretical Perspective. Nano Lett., 20, 9, 6225–6234. https://doi.org/10.1021/acs.nanolett.0c02381
[12] Yafeng Xu, Hao Zhang, Xinnan Mao, Lifeng Ding, Lu Wang, Youyong Li. (2021) Defect stability and intriguing magnetic properties in Janus chromium trihalides monolayer, Applied Surface Science 569, 150995, https://doi.org/10.1016/j.apsusc.2021.150995
[13] Weijong Chen, et al. (2019) Direct observation of van der Waals stacking–dependent interlayer magnetism. Science 366, 983-987. DOI:10.1126/science.aav1937
[14] Shawulienu Kezilebieke, et al. (2021) Electronic and Magnetic Characterization of Epitaxial CrBr3 Monolayers on a Superconducting Substrate. Advanced Materials 33,23,2006850. https://doi.org/10.1002/adma.202006850
[15] Kozlenko, D.P., Lis, O.N., Kichanov, S.E. et al. (2021) Spin-induced negative thermal expansion and spin–phonon coupling in van der Waals material CrBr3. npj Quantum Mater. 6, 19. https://doi.org/10.1038/s41535-021-00318-5
[16] Jiangbin Wu, et al. (2022) Spin–Phonon Coupling in Ferromagnetic Monolayer Chromium Tribromide. Advanced Materials 34, 20 2108506. https://doi.org/10.1002/adma.202108506
[17] de Jongh, L. J.(2012) Magnetic properties of layered transition metal compounds; Springer Netherlands, Vol. 9.
[18] Chaolong Tang, et al. (2020) Magnetic Proximity Effect in Graphene/CrBr3 van der Waals Heterostructures. Advanced Materials 32, 16,1908498. https://doi.org/10.1002/adma.201908498
[19] Gabriele Clemente, et al. (2023) Electron spin resonance on a 2D van der Waals CrBr3 uniaxial ferromagnet. Journal of Applied Physics 133 034301
[20] Klein, D.R., MacNeill, D., Song, Q. et al. (2019) Enhancement of interlayer exchange in an ultrathin two-dimensional magnet. Nat. Phys. 15, 1255–1260. https://doi.org/10.1038/s41567-019-0651-0
[21] Hyun Ho Kim, et al. (2019) Evolution of interlayer and intralayer magnetism in three atomically thin chromium trihalides. PNAS, 116, 23,11131–11136. https://doi.org/10.1073/pnas.1902100116
[22] Deng, Y., Yu, Y., Song, Y. et al. (2018) Gate-tunable room-temperature ferromagnetism in two-dimensional Fe3GeTe2. Nature 563, 94–99. https://doi.org/10.1038/s41586-018-0626-9
[23] Xu-Fan Chen, Qiang Yang, Xiao-Hui Hu.(2021) Tunable electronic and magnetic properties of transition-metal atoms doped CrBr3 monolayer. Acta Phys. Sin., 70(24): 247401. doi: 10.7498/aps.70.20210936
[24] Choi EM, Sim KI, Burch KS, Lee YH. (2022) Emergent Multifunctional Magnetic Proximity in van der Waals Layered Heterostructures. Adv Sci (Weinh).9(21): e2200186. doi: 10.1002/advs.202200186.
[25] Gong, C., Li, L., Li, Z., Ji, H., Stern, A., Xia, Y., Cao, T., Bao, W., Wang, C., Wang, Y., Qiu, Z. Q., Cava, R. J., Louie, S. G., Xia, J., & Zhang, X. (2017). Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals. Nature, 546(7657), 265–269. https://doi.org/10.1038/nature22060
[26] M. Gibertini, et al. (2019) Magnetic 2D materials and heterostructures. Nature Nanotechnology,14, 408–419. https://doi.org/10.1038/s41565-019-0438-6
[27] Wu, Y., Zhu, M., Zhao, R., Liu, X., Shen, J. , et al. (2022). Degradation Effect and Magnetoelectric Transport Properties in CrBr3 Devices. Materials,15(9), 3007. http://dx.doi.org/10.3390/ma15093007
[28] Shcherbakov, D, et al. (2018) Raman Spectroscopy, Photocatalytic Degradation, and Stabilization of Atomically Thin Chromium Tri-iodide. Nano Lett., 18, 4214–4219.
[29] Groenke, M, et al. (2019) Chromium Trihalides CrX3 (X = Cl, Br, I): Direct Deposition of Micro- and Nanosheets on Substrates by Chemical Vapor Transport. Adv. Mater. Interfaces, 6, 1901410
[30] Grönke, Martin. (2020). Synthesis and characterization of layered transition metal trihalides MCl3 (M = Ru, Mo, Ti, Cr) and CrX3 (X = Cl, Br, I). 10.26127/BTUOpen-5282.
[31] A Borghesi, G Guizzetti, F Marabelli, L Nosenzo, E Reguzzoni, (1984) Far-infrared optical properties of CrCl3 and CrBr3, Solid State Communications, 52, 4, 463-465, https://doi.org/10.1016/0038-1098(84)90036-X
[32] V.M. Bermudez, (1976) Unit-cell vibrational spectra of chromium trichoride and chromium tribromide, Solid State Communications,19, 8, 693-697, https://doi.org/10.1016/0038-1098(76)90899-1
[33] Yujun Zhang, et al. (2020) Self-modulated photoluminescence of CrBr3 flake. Micro & Nano Letters, 15, 788–792. doi:10.1049/mnl.2020.0260
[34] Dinesh Baral, et al. (2021) Small energy gap revealed in CrBr3 by scanning tunneling spectroscopy. Phys. Chem. Chem. Phys.,23, 3225. DOI: 10.1039/d0cp05633b
[35] Sushant Kumar Behera, et al. (2019) Proximity effects in graphene and ferromagnetic CrBr3 van der Waals heterostructures. Phys. Chem. Chem. Phys., 21, 25788. DOI: 10.1039/c9cp05252f
[36] Wun Jung, et al. (1965) Dielectric Constant and Magneto‐Optical Kerr Rotation of Ferromagnetic Chromium Tribromide above the Absorption Band Edge. Journal of Applied Physics 36, 2422–2426.
[37] J. F. Dillon, Jr.; H. Kamimura; J. P. Remeika. (1963) Magneto‐Optical Studies of Chromium Tribromide. Journal of Applied Physics 34, 1240–1245, https://doi.org/10.1063/1.1729455
[38] J.F. Dillon, H. Kamimura, J.P. Remeika. (1966) Magneto-optical properties of ferromagnetic chromium trihalides, Journal of Physics and Chemistry of Solids, 27, 9, 1531-1549
[39] K. K. Kanazawa, G. B. Street.(1970) The Electrical Properties of Chromium Tribromide. physica status solidi (b), 38, 1,445-450, https://doi.org/10.1002/pssb.19700380146
[40] Zhaowei Zhang, et al. (2019) Direct Photoluminescence Probing of Ferromagnetism in Monolayer Two-Dimensional CrBr3 Nano Letters 19 (5), 3138-3142. DOI: 10.1021/acs.nanolett.9b00553
[41] 林再順,羅健榮. (2015, February 25). 從微米到奈米:光學顯微術的一大步.物理雙月刊. https://pb.ps-taiwan.org/modules/news/article.php?storyid=4
[42] G. Binnig, H. Rohrer, Ch. Gerber and E. Weibel. (1982) Surface Studies by Scanning Tunneling Microscopy. Phys. Rev. Lett., 49, 61
[43] J. Tersoff and D. R. Hamann. (1985) Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805
[44] 黃英碩. (2005).掃描探針顯微術的原理及應用.科儀新知, 26(4), 7–17.
[45] J. Chen, Introduction to Scanning Tunneling Microscopy, New York:Oxford Univ. Press (1993).
[46] Dawn Bonnell. (2001). Scanning Probe Microscopy and Spectroscopy (2nd ed.). WILEY-VCH.
[47] Charles Kitte. (2005). Introduction to Solid State Physics (8th ed.). WILEY-VCH.
[48] Chunli Bai. (1992). Scanning Tunneling Microscopy and Its Application (1st ed.). Springer.
[49] M. Weimer, J. Kramar, J. D. Baldeschwieler (1989) Band bending and the apparent barrier height in scanning tunneling microscopy, Phys. Rev. B 39, 5572(R). DOI: 10.1103/PhysRevB.39.5572
[50] Scanning Probe Microscopy: AFM and STM. (n.d.). AUSTRALIA SURFACE METROLOGY LAB. https://australiasurfacemetrologylab.org/principles-of-operation-scanning-probe-microscopy
[51] F. Atamny, O. Spillecke and R. Schlögl, (1999) On the STM imaging contrast of graphite: towards a “true’' atomic resolution, Phys. Chem. Chem. Phys.,1, 4113-4118, https://doi.org/10.1039/A904657G
[52] Yongfeng Wang, Yingchun Ye, Kai Wu, (2006) Simultaneous observation of the triangular and honeycomb structures on highly oriented pyrolytic graphite at room temperature: An STM study, Surface Science,600, 3, 729-734, https://doi.org/10.1016/j.susc.2005.12.001