簡易檢索 / 詳目顯示

研究生: 童義倫
Tung, Yi-Lun
論文名稱: 38GHz 鏡像抑制混頻器與可變增益放大器設計
Design of a 38-GHz Image Rejection Mixer and a Variable Gain Amplifier
指導教授: 蔡政翰
Tsai, Jen-Han
學位類別: 碩士
Master
系所名稱: 電機工程學系
Department of Electrical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 132
中文關鍵詞: 鏡像抑制混頻器鏡像拒斥比互補式金氧半導體可變增益放大器電流控制架構基極偏壓
英文關鍵詞: Image Rejection Mixer, Image Rejection Ratio (IRR), Complementary Metal Oxide Semiconductor (CMOS), Variable Gain Amplifier (VGA), Current Steering, Body Bias
DOI URL: http://doi.org/10.6345/NTNU202001570
論文種類: 學術論文
相關次數: 點閱:76下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 第一章 緒論 1 1.1 研究背景與動機 1 1.2 文獻探討 2 1.2.1 混頻器文獻探討 2 1.2.2 可變增益放大器文獻探討 4 1.3 研究成果 6 1.4 論文架構 7 第二章 38GHz鏡像抑制混頻器設計 8 2.1 混頻器簡介 8 2.2 混頻器架構比較 9 2.3 混頻器參數介紹 12 2.3.1 轉換增益 (Conversion Gain) 12 2.3.2 隔離度 (Isolation) 12 2.3.3 線性度(Linearity) 13 2.3.4 鏡像訊號(Image) 13 2.4 鏡像抑制混頻器電路架構 17 2.4.1 鏡像抑制混頻器 17 2.4.2 電晶體尺寸選擇 18 2.4.3 加入閘極偏壓之電晶體尺寸選擇 22 2.4.4 IF端緩衝放大器設計 27 2.4.5 LO端馬相巴倫器設計(LO Marchand Balun) 30 2.4.6 RF端馬相巴倫器設計(RF Marchand Balun) 33 2.4.7 RF端匹配網路設計 36 2.4.8 降頻混頻器特性 38 2.5 鏡像抑制混頻器電路設計 42 2.5.1 RF端威爾金森功率分配器設計(Wilkinson Power Divider) 42 2.5.2 IF端多相位濾波器設計 44 2.5.3 LO端正交訊號產生器設計 47 2.5.4 四相位產生器(Quadrature Generator)設計重點 50 2.5.5 分析LO端與IF端對於鏡像拒斥比的影響 61 2.5.6 鏡像抑制混頻器模擬結果 66 2.5.7 鏡像抑制混頻器量測結果 73 2.6 問題與討論 78 2.7 總結 79 第三章 38GHz可變增益放大器設計 80 3.1 可變增益放大器簡介 80 3.2 可變增益放大器之架構 82 3.2.1 數位控制技術 84 3.3 可變增益放大器參數介紹 85 3.3.1 散射參數 (S-parameter) 85 3.3.2 可變增益範圍(Gain Control Range) 86 3.3.3 相位誤差(Phase Error) 86 3.3.4 輸入/輸出端匹配(Input/Output Matching Network) 86 3.4 可變增益放大器設計 87 3.4.1 主電路電晶體偏壓分析與選擇 87 3.4.2 主電路電晶體尺寸分析與選擇 89 3.4.3 Current Steering 電晶體偏壓及尺寸分析與選擇 94 3.4.4 Current Steering 之 Body Bias (Vb) 的設計 97 3.4.5 匹配網路設計 100 3.4.6 旁路電路(Bypass)設計 104 3.5 可變增益放大器之模擬結果 107 3.6 可變增益放大器之量測結果 116 3.7 問題與討論 123 3.8 總結 125 第四章 結論 126 參 考 文 獻 127 自傳 132 學術成就 132

    [1]C. Chen, J. Lin and H. Wang, "A 38-GHz High-Speed I/Q Modulator Using Weak-Inversion Biasing Modified Gilbert-Cell Mixer," in IEEE Microwave and Wireless Components Letters, vol. 28, no. 9, pp. 822-824, Sept. 2018.
    [2]J.-H. Tsai, P.-S. Wu, C.-S. Lin, T.-W. Huang, J. G. J. Chern, W.-C. Huang, and H. Wang, “A 25–75-GHz broadband Gilbert-cell mixer using 90-nm CMOS technology,” IEEE Microw. Wireless Compon. Lett., vol. 17, no. 4, pp. 247–249, Apr. 2007.
    [3]F. Zhang, E. Skafidas and W. Shieh, "A 60-GHz double-balanced Gilbert cell down-conversion mixer on 130-nm CMOS", IEEE RFIC Symp. Dig., pp. 141-144, 2007-Jun.
    [4]C.-S. Lin, P.-S. Wu, H.-Y. Chang and H. Wang, " A 9–50-GHz Gilbert-cell down-conversion mixer in 0.13- CMOS technology ", IEEE Microw. Wireless Compon. Lett., vol. 16, no. 5, pp. 293-295, May 2006.
    [5]C.-C. Kuo, C.-L. Kuo, C.-J. Kuo, S.-A. Maas, and H. Wang, “Novel mInIature and broadband millimeter-wave monolithic star mixers,” IEEE Trans. Microw. Theory Tech., vol. 56, no. 4, pp. 793–802, Apr. 2008.
    [6]J.-H. Chen, C.-C. Kuo, Y.-M. Hsin, and H. Wang, “A 15–50 GHz broadband resistive FET ring mixer using 0.18- m CMOS technology,”inIEEE MTT-SInt.Microw.Symp.Dig.
    2010.pp784-787
    [7]T. Chang and J. Lin, 11 GHz ultra-wideband resistive ring mixer in 0.18- CMOS technology ", IEEE RFIC Symp. Dig., 2006-Jun.
    [8]J. Tsai, "Design of 1.2-V Broadband High Data-Rate MMW CMOS I/Q Modulator and Demodulator Using Modified Gilbert-Cell Mixer," in IEEE Transactions on Microwave Theory and Techniques, vol. 59, no. 5, pp. 1350-1360, May 2011
    [9]F. Zhu, K. Wang and K. Wu, "Design Considerations for Image-Rejection Enhancement of Quadrature Mixers," in IEEE Microwave and Wireless Components Letters, vol. 29, no. 3, pp. 216-218, March 2019
    [10]I. C. H. Lai, and M. Fujishima, “An Integrated 20-26 GHz CMOS Up-Conversion Mixer with Low Power Consumption,” 2006 Proceedings of the 32nd European Solid-State Circuits Conference., Montreux, Switzerland, Sep. 2006, pp. 400-403.
    [11]C. Huynh, J. Lee, and C. Nguyen, “A K-band SiGe BiCMOS fully integrated up-conversion mixer,” 2013 Asia-Pacific Microwave Conference Proceedings (APMC), Seoul, South Korea, Nov. 2013, pp. 185-187.
    [12]M. J. Zeng, and R. M. Weng, “A 0.8V 4.3mW sub-harmonic mixer for ultra-wideband systems,” 2012 IEEE International Symposium on Circuits and Systems., Seoul, Korea, May. 2012, pp. 1927-1930.
    [13]H. K. Chiou, S. C. Kuo, and H. Y. Chung, “14-30 GHz low-power sub-harmonic single-balanced gate-pumped mixer with transformer combiner in 0.18 μm CMOS,” in Electronics Letters., vol. 50, no. 16, pp. 1141-1143, Jul. 2014.
    [14]C. Chen, J. Lin and H. Wang, "A 38-GHz High-Speed I/Q Modulator Using Weak-Inversion Biasing Modified Gilbert-Cell Mixer," in IEEE Microwave and Wireless Components Letters, vol. 28, no. 9, pp. 822-824, Sept. 2018.
    [15]J. Hsieh, T. Wang and S. Lu, "A 90-nm CMOS V-Band Low-Power Image-Reject Receiver Front-End With High-Speed Auto-Wake-Up and Gain Controls," in IEEE Transactions on Microwave Theory and Techniques, vol. 64, no. 2, pp. 541-549, Feb. 2016.
    [16]M. Frounchi, C. Coen, C. D. Cheon, N. Lourenco, W. Williams and J. D. Cressler, "A V-Band SiGe Image-Reject Receiver Front-End for Atmospheric Remote Sensing," 2018 IEEE BiCMOS and Compound Semiconductor Integrated Circuits and Technology Symposium (BCICTS), San Diego, CA, 2018, pp. 223-226.
    [17]M. Frounchi, A. Alizadeh, C. T. Coen and J. D. Cressler, "A Low-Loss Broadband Quadrature Signal Generation Network for High Image Rejection at Millimeter-Wave Frequencies," in IEEE Transactions on Microwave Theory and Techniques, vol. 66, no. 12, pp. 5336-5346, Dec. 2018
    [18]M. Huang, T. Chi, F. Wang, S. Li, T. Huang and H. Wang, "A 24.5-43.5GHz Compact RX with Calibration-Free 32-56dB Full-Frequency Instantaneously Wideband Image Rejection Supporting Multi-Gb/s 64-QAM/256-QAM for Multi-Band 5G Massive MIMO," 2019 IEEE Radio Frequency Integrated Circuits Symposium (RFIC), Boston, MA, USA, 2019, pp. 275-278
    [19]F. Zhu, K. Wang and K. Wu, "Design Considerations for Image-Rejection Enhancement of Quadrature Mixers," in IEEE Microwave and Wireless Components Letters, vol. 29, no. 3, pp. 216-218, March 2019
    [20]W. Lin, J. Tsai, J. Cheng, W. Lin, T. Chiang and T. Huang, "A 67-86 GHz Spectrum-Efficient CMOS Transmitter Supporting 1024-QAM With a Process-Variation-Tolerant Design," in IEEE Access, vol. 8, pp. 74458-74471, 2020.
    [21]J. Xiao, I. Mehr and J. Silva-Martinez, “A high dynamic range CMOS variable gain amplifier for mobile DTV tuner,” IEEE J. Solid-State Circuits, vol 42, pp. 292-301, Feb. 2007.
    [22]Z. Jiang et al., "A 33.5–39 GHz 5-bit variable gain LNA with 4 dB NF and low phase shift," 2017 IEEE Asia Pacific Microwave Conference (APMC), Kuala Lumpar, 2017, pp. 1200-1202.
    [23]P. Lo, C. Lin, H. Kuo and H. Chuang, "A Ka-band CMOS low-phase-variation variable gain amplifier with good matching capacity," 2012 9th European Radar Conference, Amsterdam, 2012, pp. 532-535.
    [24]Z. Tsai, J. Kao, K. Lin and H. Wang, "A compact low DC consumption 24-GHz Cascode HEMT VGA," 2009 Asia Pacific Microwave Conference, Singapore, 2009, pp. 1625-1627.
    [25]W. Li, Y. Chiang, J. Tsai, H. Yang, J. Cheng and T. Huang, "60-GHz 5-bit Phase Shifter With Integrated VGA Phase-Error Compensation," in IEEE Transactions on Microwave Theory and Techniques, vol. 61, no.3, pp.1224-1235, March 2013.
    [26]B. Min and G. M. Rebeiz, "Ka-Band SiGe HBT Low Phase Imbalance Differential 3-Bit Variable Gain LNA," in IEEE Microwave and Wireless Components Letters, vol. 18, no. 4, pp. 272-274, April 2008.
    [27]Che-Chung Kuo, Zuo-Min Tsai, Jeng-Han Tsai and Huei Wang, "A 71–76 GHz CMOS variable gain amplifier using current steering technique," 2008 IEEE Radio Frequency Integrated Circuits Symposium, Atlanta, GA, 2008, pp. 609-612
    [28]K. Kao, D. Lu, J. Kao and K. Lin, "A 60 GHz variable-gain low-noise amplifier with low phase variation," 2016 IEEE International Symposium on Radio-Frequency Integration Technology (RFIT), Taipei, 2016, pp. 1-3
    [29]J.-H. Tsai and C.-L. Lin, “A 40 GHz 4-Bit digitally controlled VGA with low phase variation using 65 nm CMOS process,” IEEE Microwave and Wireless Components Letters, vol. 29, no. 11, pp. 729-732, Nov. 2019.
    [30]Y. K. Hsieh, J. L. Kuo, H. Wang and L. H. Lu, “A 60 GHz Broadband Low-Noise Amplifier With Variable-Gain Control in 65 nm CMOS,” IEEE Microwave and Wireless Components Letters, vol. 21, no. 11, pp. 610-612, Nov. 2011.
    [31]Jeng-Han Tsai, Jen-Wei Wang, Chung-Han Wu, “A V-band Variable Gain Amplifier with Low Phase Variation using 90 nm CMOS Technology,” Microwave and Optical Technology Letters, vol. 56, no. 8, pp. 1946-1949, Aug. 2014.
    [32]D. S. Siao, J. C. Kao and H. Wang, “A 60 GHz Low Phase Variation Variable Gain Amplifier in 65 nm CMOS,” IEEE Microwave and Wireless Components Letters, vol. 24, no. 7, pp. 457-459, July 2014.
    [33]H. C. Yeh, S. Aloui, C. C. Chiong and H. Wang, “A Wide Gain Control Range V-Band CMOS Variable-Gain Amplifier With Built-In Linearizer,” IEEE Transactions on Microwave Theory and Techniques, vol. 61, no. 2, pp. 902-913, Feb. 2013.
    [34]Y. Yi, D. Zhao, and X. You, A. Valdes-Garcia, “A Ka-band CMOS digital-controlled phase-invariant variable gain amplifier with 4-bit tuning range and 0.5-dB resolution,” 2018 IEEE Radio Frequency Integrated Circuits Symposium (RFIC), pp. 152-155, 2018.
    [35]B. Sadhu, J. F. Bulzacchelli, A. Valdes-Garcia, “A 28GHz SiGe BiCMOS phase invariant VGA,” 2016 IEEE Radio Frequency Integrated Circuits Symposium (RFIC), pp. 150-153, 2016.
    [36]C.-Y. Hsieh, J.-C. Kao, J.-J. Kuo, K.-Y. Lin, “A 57-64 GHz low-phase-variation variable-gain amplifier,” in IEEE MTT-S Int. Microwave Symp. Dig., 2012, pp. 373-376.
    [37]D. S. Siao, J. C. Kao and H. Wang, “A 60 GHz Low Phase Variation Variable Gain Amplifier in 65 nm CMOS,” IEEE Microwave and Wireless Components Letters, vol. 24, no. 7, pp. 457-459, July 2014.
    [38]李政澤,射頻前端異質晶片整合與使用磁耦合互連技術之研究,國立中山大學電機工程學研究所碩士論文,2011年
    [39]J. Tsai, "Design of 40–108-GHz Low-Power and High-Speed CMOS Up-/Down-Conversion Ring Mixers for Multistandard MMW Radio Applications," in IEEE Transactions on Microwave Theory and Techniques, vol. 60, no. 3, pp. 670-678, March 2012.

    無法下載圖示 電子全文延後公開
    2025/09/14
    QR CODE