研究生: |
童義倫 Tung, Yi-Lun |
---|---|
論文名稱: |
38GHz 鏡像抑制混頻器與可變增益放大器設計 Design of a 38-GHz Image Rejection Mixer and a Variable Gain Amplifier |
指導教授: |
蔡政翰
Tsai, Jen-Han |
學位類別: |
碩士 Master |
系所名稱: |
電機工程學系 Department of Electrical Engineering |
論文出版年: | 2020 |
畢業學年度: | 108 |
語文別: | 中文 |
論文頁數: | 132 |
中文關鍵詞: | 鏡像抑制混頻器 、鏡像拒斥比 、互補式金氧半導體 、可變增益放大器 、電流控制架構 、基極偏壓 |
英文關鍵詞: | Image Rejection Mixer, Image Rejection Ratio (IRR), Complementary Metal Oxide Semiconductor (CMOS), Variable Gain Amplifier (VGA), Current Steering, Body Bias |
DOI URL: | http://doi.org/10.6345/NTNU202001570 |
論文種類: | 學術論文 |
相關次數: | 點閱:254 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
[1]C. Chen, J. Lin and H. Wang, "A 38-GHz High-Speed I/Q Modulator Using Weak-Inversion Biasing Modified Gilbert-Cell Mixer," in IEEE Microwave and Wireless Components Letters, vol. 28, no. 9, pp. 822-824, Sept. 2018.
[2]J.-H. Tsai, P.-S. Wu, C.-S. Lin, T.-W. Huang, J. G. J. Chern, W.-C. Huang, and H. Wang, “A 25–75-GHz broadband Gilbert-cell mixer using 90-nm CMOS technology,” IEEE Microw. Wireless Compon. Lett., vol. 17, no. 4, pp. 247–249, Apr. 2007.
[3]F. Zhang, E. Skafidas and W. Shieh, "A 60-GHz double-balanced Gilbert cell down-conversion mixer on 130-nm CMOS", IEEE RFIC Symp. Dig., pp. 141-144, 2007-Jun.
[4]C.-S. Lin, P.-S. Wu, H.-Y. Chang and H. Wang, " A 9–50-GHz Gilbert-cell down-conversion mixer in 0.13- CMOS technology ", IEEE Microw. Wireless Compon. Lett., vol. 16, no. 5, pp. 293-295, May 2006.
[5]C.-C. Kuo, C.-L. Kuo, C.-J. Kuo, S.-A. Maas, and H. Wang, “Novel mInIature and broadband millimeter-wave monolithic star mixers,” IEEE Trans. Microw. Theory Tech., vol. 56, no. 4, pp. 793–802, Apr. 2008.
[6]J.-H. Chen, C.-C. Kuo, Y.-M. Hsin, and H. Wang, “A 15–50 GHz broadband resistive FET ring mixer using 0.18- m CMOS technology,”inIEEE MTT-SInt.Microw.Symp.Dig.
2010.pp784-787
[7]T. Chang and J. Lin, 11 GHz ultra-wideband resistive ring mixer in 0.18- CMOS technology ", IEEE RFIC Symp. Dig., 2006-Jun.
[8]J. Tsai, "Design of 1.2-V Broadband High Data-Rate MMW CMOS I/Q Modulator and Demodulator Using Modified Gilbert-Cell Mixer," in IEEE Transactions on Microwave Theory and Techniques, vol. 59, no. 5, pp. 1350-1360, May 2011
[9]F. Zhu, K. Wang and K. Wu, "Design Considerations for Image-Rejection Enhancement of Quadrature Mixers," in IEEE Microwave and Wireless Components Letters, vol. 29, no. 3, pp. 216-218, March 2019
[10]I. C. H. Lai, and M. Fujishima, “An Integrated 20-26 GHz CMOS Up-Conversion Mixer with Low Power Consumption,” 2006 Proceedings of the 32nd European Solid-State Circuits Conference., Montreux, Switzerland, Sep. 2006, pp. 400-403.
[11]C. Huynh, J. Lee, and C. Nguyen, “A K-band SiGe BiCMOS fully integrated up-conversion mixer,” 2013 Asia-Pacific Microwave Conference Proceedings (APMC), Seoul, South Korea, Nov. 2013, pp. 185-187.
[12]M. J. Zeng, and R. M. Weng, “A 0.8V 4.3mW sub-harmonic mixer for ultra-wideband systems,” 2012 IEEE International Symposium on Circuits and Systems., Seoul, Korea, May. 2012, pp. 1927-1930.
[13]H. K. Chiou, S. C. Kuo, and H. Y. Chung, “14-30 GHz low-power sub-harmonic single-balanced gate-pumped mixer with transformer combiner in 0.18 μm CMOS,” in Electronics Letters., vol. 50, no. 16, pp. 1141-1143, Jul. 2014.
[14]C. Chen, J. Lin and H. Wang, "A 38-GHz High-Speed I/Q Modulator Using Weak-Inversion Biasing Modified Gilbert-Cell Mixer," in IEEE Microwave and Wireless Components Letters, vol. 28, no. 9, pp. 822-824, Sept. 2018.
[15]J. Hsieh, T. Wang and S. Lu, "A 90-nm CMOS V-Band Low-Power Image-Reject Receiver Front-End With High-Speed Auto-Wake-Up and Gain Controls," in IEEE Transactions on Microwave Theory and Techniques, vol. 64, no. 2, pp. 541-549, Feb. 2016.
[16]M. Frounchi, C. Coen, C. D. Cheon, N. Lourenco, W. Williams and J. D. Cressler, "A V-Band SiGe Image-Reject Receiver Front-End for Atmospheric Remote Sensing," 2018 IEEE BiCMOS and Compound Semiconductor Integrated Circuits and Technology Symposium (BCICTS), San Diego, CA, 2018, pp. 223-226.
[17]M. Frounchi, A. Alizadeh, C. T. Coen and J. D. Cressler, "A Low-Loss Broadband Quadrature Signal Generation Network for High Image Rejection at Millimeter-Wave Frequencies," in IEEE Transactions on Microwave Theory and Techniques, vol. 66, no. 12, pp. 5336-5346, Dec. 2018
[18]M. Huang, T. Chi, F. Wang, S. Li, T. Huang and H. Wang, "A 24.5-43.5GHz Compact RX with Calibration-Free 32-56dB Full-Frequency Instantaneously Wideband Image Rejection Supporting Multi-Gb/s 64-QAM/256-QAM for Multi-Band 5G Massive MIMO," 2019 IEEE Radio Frequency Integrated Circuits Symposium (RFIC), Boston, MA, USA, 2019, pp. 275-278
[19]F. Zhu, K. Wang and K. Wu, "Design Considerations for Image-Rejection Enhancement of Quadrature Mixers," in IEEE Microwave and Wireless Components Letters, vol. 29, no. 3, pp. 216-218, March 2019
[20]W. Lin, J. Tsai, J. Cheng, W. Lin, T. Chiang and T. Huang, "A 67-86 GHz Spectrum-Efficient CMOS Transmitter Supporting 1024-QAM With a Process-Variation-Tolerant Design," in IEEE Access, vol. 8, pp. 74458-74471, 2020.
[21]J. Xiao, I. Mehr and J. Silva-Martinez, “A high dynamic range CMOS variable gain amplifier for mobile DTV tuner,” IEEE J. Solid-State Circuits, vol 42, pp. 292-301, Feb. 2007.
[22]Z. Jiang et al., "A 33.5–39 GHz 5-bit variable gain LNA with 4 dB NF and low phase shift," 2017 IEEE Asia Pacific Microwave Conference (APMC), Kuala Lumpar, 2017, pp. 1200-1202.
[23]P. Lo, C. Lin, H. Kuo and H. Chuang, "A Ka-band CMOS low-phase-variation variable gain amplifier with good matching capacity," 2012 9th European Radar Conference, Amsterdam, 2012, pp. 532-535.
[24]Z. Tsai, J. Kao, K. Lin and H. Wang, "A compact low DC consumption 24-GHz Cascode HEMT VGA," 2009 Asia Pacific Microwave Conference, Singapore, 2009, pp. 1625-1627.
[25]W. Li, Y. Chiang, J. Tsai, H. Yang, J. Cheng and T. Huang, "60-GHz 5-bit Phase Shifter With Integrated VGA Phase-Error Compensation," in IEEE Transactions on Microwave Theory and Techniques, vol. 61, no.3, pp.1224-1235, March 2013.
[26]B. Min and G. M. Rebeiz, "Ka-Band SiGe HBT Low Phase Imbalance Differential 3-Bit Variable Gain LNA," in IEEE Microwave and Wireless Components Letters, vol. 18, no. 4, pp. 272-274, April 2008.
[27]Che-Chung Kuo, Zuo-Min Tsai, Jeng-Han Tsai and Huei Wang, "A 71–76 GHz CMOS variable gain amplifier using current steering technique," 2008 IEEE Radio Frequency Integrated Circuits Symposium, Atlanta, GA, 2008, pp. 609-612
[28]K. Kao, D. Lu, J. Kao and K. Lin, "A 60 GHz variable-gain low-noise amplifier with low phase variation," 2016 IEEE International Symposium on Radio-Frequency Integration Technology (RFIT), Taipei, 2016, pp. 1-3
[29]J.-H. Tsai and C.-L. Lin, “A 40 GHz 4-Bit digitally controlled VGA with low phase variation using 65 nm CMOS process,” IEEE Microwave and Wireless Components Letters, vol. 29, no. 11, pp. 729-732, Nov. 2019.
[30]Y. K. Hsieh, J. L. Kuo, H. Wang and L. H. Lu, “A 60 GHz Broadband Low-Noise Amplifier With Variable-Gain Control in 65 nm CMOS,” IEEE Microwave and Wireless Components Letters, vol. 21, no. 11, pp. 610-612, Nov. 2011.
[31]Jeng-Han Tsai, Jen-Wei Wang, Chung-Han Wu, “A V-band Variable Gain Amplifier with Low Phase Variation using 90 nm CMOS Technology,” Microwave and Optical Technology Letters, vol. 56, no. 8, pp. 1946-1949, Aug. 2014.
[32]D. S. Siao, J. C. Kao and H. Wang, “A 60 GHz Low Phase Variation Variable Gain Amplifier in 65 nm CMOS,” IEEE Microwave and Wireless Components Letters, vol. 24, no. 7, pp. 457-459, July 2014.
[33]H. C. Yeh, S. Aloui, C. C. Chiong and H. Wang, “A Wide Gain Control Range V-Band CMOS Variable-Gain Amplifier With Built-In Linearizer,” IEEE Transactions on Microwave Theory and Techniques, vol. 61, no. 2, pp. 902-913, Feb. 2013.
[34]Y. Yi, D. Zhao, and X. You, A. Valdes-Garcia, “A Ka-band CMOS digital-controlled phase-invariant variable gain amplifier with 4-bit tuning range and 0.5-dB resolution,” 2018 IEEE Radio Frequency Integrated Circuits Symposium (RFIC), pp. 152-155, 2018.
[35]B. Sadhu, J. F. Bulzacchelli, A. Valdes-Garcia, “A 28GHz SiGe BiCMOS phase invariant VGA,” 2016 IEEE Radio Frequency Integrated Circuits Symposium (RFIC), pp. 150-153, 2016.
[36]C.-Y. Hsieh, J.-C. Kao, J.-J. Kuo, K.-Y. Lin, “A 57-64 GHz low-phase-variation variable-gain amplifier,” in IEEE MTT-S Int. Microwave Symp. Dig., 2012, pp. 373-376.
[37]D. S. Siao, J. C. Kao and H. Wang, “A 60 GHz Low Phase Variation Variable Gain Amplifier in 65 nm CMOS,” IEEE Microwave and Wireless Components Letters, vol. 24, no. 7, pp. 457-459, July 2014.
[38]李政澤,射頻前端異質晶片整合與使用磁耦合互連技術之研究,國立中山大學電機工程學研究所碩士論文,2011年
[39]J. Tsai, "Design of 40–108-GHz Low-Power and High-Speed CMOS Up-/Down-Conversion Ring Mixers for Multistandard MMW Radio Applications," in IEEE Transactions on Microwave Theory and Techniques, vol. 60, no. 3, pp. 670-678, March 2012.