簡易檢索 / 詳目顯示

研究生: 鄭思鴻
Cheng, Szu-Hung
論文名稱: 頻率限制下持續刺、直拳打擊之雙手協調與震盪器模型
Oscillator Model and Hands Coordination for Jab and Straight Punch Combinations in Different Frequencies
指導教授: 劉有德
Liu, Yeou-Teh
口試委員: 劉有德
Liu, Yeou-Teh
謝宗諭
Hsieh, tsung-yu
莊國良
Chuang, Kuo-Liang
口試日期: 2024/06/14
學位類別: 碩士
Master
系所名稱: 運動競技學系
Department of Athletic Performance
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 68
中文關鍵詞: 拳擊動力系統理論動力系統理論HKB模型
英文關鍵詞: Boxing, dynamical systems theory, dynamical systems theory, HKB model
研究方法: 實驗設計法
DOI URL: http://doi.org/10.6345/NTNU202401145
論文種類: 學術論文
相關次數: 點閱:91下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 拳擊的攻擊方式中,使用次數最多的是持續刺、直拳打擊,其為一種週期性動作,可視為一種震盪器 (oscillator),作為動力系統去探討其中動作變化的規律。目的:探討持續刺、直拳打擊之模型建立與雙手協調。方法:招募8位菁英拳擊手,在不同頻率下,以持續刺拳與持續刺、直拳打擊牆靶,錄製兩手動作,由Simi motion將拳套上標記點水平面之位移數位化,以動作方向的一維數據計算頻率表現與離散相對相位,並繪製相平面圖與虎克平面圖進行質性觀察,依此進行多元迴歸以建立震盪器模型,並對不同頻率與迴歸公式之解釋量進行比較。此外,將實驗影片製作為數位問卷,招募30位一般人與31位拳擊手判斷影片中動作為間斷或連續,比較兩類觀察者答題一致率後,對間斷或連續答案進行羅吉斯迴歸。結果:相對相位在指定頻率下沒有顯著差異;以質性觀察結果建立之非線性震盪器迴歸模式為:x ̈=截距+c_10 x+c_30 x^3+c_01 x ̇+c_11 xx ̇。迴歸結果發現震盪器模型可描述約2Hz以上之動力;在雙手擊拳時,加上對側手參數進行迴歸可提高部分較低頻率情境之解釋量;知覺測驗部分,兩類參與者之答題一致率沒有差異,羅吉斯迴歸方程之轉折點發生在頻率約2Hz處。結論:持續刺、直拳打擊之動力在高頻時可以震盪器模型進行描述,觀察者亦可分辨高頻之連續擊拳的動力。

    In boxing, jab and cross combinations are crucial attacking techniques. These can be thought of as oscillators within a dynamical system. Purpose: To investigate modeling the jab and cross combinations with a nonlinear oscillator and the coordination of the jabs and crosses. Methods: Eight national-level boxing athletes hit the wall pad with continuous jabs and crosses under different frequency conditions. Position data of a marker on the gloves were captured and digitized with Simi motion. The one-dimensional data in the movement direction were used to derive the frequency performance and the discrete relative phase for the jabs and crosses. The nonlinear oscillator models were constructed based on the characteristics of the phase plane plots and Hooke’s plane plots. The models were evaluated under five frequencies. In addition, 30 young adults with no combat sports experience and 31 boxers were recruited to take a digital questionnaire made with the experiment videos and to identify if the actions in the videos were continuous or discrete. The consistencies of the answers were compared between the groups, and the Logistic regression was conducted for the responses on frequencies. Results: There was no significant difference in the relative phase among the given frequencies. The constructed nonlinear oscillator model was: x ̈=intercept+c_10 x+c_30 x^3+c_01 x ̇+c_11 xx ̇. The model had high variance accounted for at frequencies higher than about 2Hz. Adding the term of the other hand to the model in the combination conditions increased the variance accounted for in some low-frequency conditions. There was no difference in the questionnaire answers consistencies between groups. The significant Logistic regression showed the inflection point at about 2Hz. Conclusion: The nonlinear oscillator model captured the dynamics of jab and cross combinations at high frequencies, observers with and without boxing experience could also differentiate the continuous versus discrete dynamics of the punches with frequency.

    摘要 i Abstract ii 目次 iii 表次 v 圖次 vi 第壹章 緒論 1 第一節 問題背景 1 第二節 研究目的與問題 1 第三節 名詞操作性定義 2 第四節 研究範圍與限制 2 第貳章 文獻探討 3 第一節 持續刺、直拳打擊 3 第二節 線性彈簧模型 4 第三節 非線性震盪器 5 第四節 RD模型與混合模型 8 第五節 HKB模型 10 第六節 文獻總結 12 第參章 前導研究 13 第一節 方法 13 一、實驗參與者 13 二、場地與設備 13 三、實驗工作 14 四、實驗程序 14 五、資料處理與分析 15 第二節 結果 16 第三節 討論 23 第四節 結論與建議 27 第肆章 研究方法 28 第一節 實驗參與者 28 第二節 實驗場地與設備 28 第三節 實驗工作 30 第四節 實驗程序 30 第五節 資料處理與分析 31 第伍章 結果 33 第一節 偏好頻率與表現 33 第二節 離散相對相位 33 第三節 相平面圖與虎克平面圖 34 第四節 震盪器模型之多元迴歸 37 第五節 答題一致率 49 第六節 羅吉斯迴歸 50 第陸章 討論 52 第一節 持續刺、直拳打擊之雙手協調 52 第二節 震盪器模型 52 第三節 知覺動作頻率與連續擊打 55 第柒章 結論 57 中文參考文獻 58 英文參考文獻 59 附錄一 61 附錄二 65

    陳怡舟、洪廷諼(2006)。世界拳擊錦標賽攻、防多樣要素分析。運動教練科學,(7),139-148。
    陳怡舟、傅文賢 (2006)。 高中男子組拳擊攻、防多樣要素分析。運動教練科學,6,115-125。
    林明佳 (2011)。2010世界盃女子拳擊錦標賽攻擊拳路分析。運動研究,20(2),57-66。
    林聖凌、陳奕良、林明佳 (2020)。2019年世界女子拳擊錦標賽攻擊技術之研究。 運動健康休閒學報,11,62-70。
    賴鍾桔、高明峰. (2009). 第一屆國際拳總主席盃拳擊錦標賽攻擊技術分析. 運動教練科學,(14),91-109.
    Ashker, S. E. (2011). Technical and tactical aspects that differentiate winning and losing performances in boxing. International journal of performance analysis in sport, 11(2), 356-364.
    Bingham, G. P. (2004). A Perceptually Driven Dynamical Model of Bimanual Rhythmic Movement (and Phase Perception). Ecological Psychology, 16(1), 45-53.
    Byblow, W. D., Carson, R. G., & Goodman, D. (1994). Expressions of asymmetries and anchoring in bimanual coordination. Human Movement Science, 13(1), 3-28.
    Fernandez, L., Huys, R., Issartel, J., Azulay, J. P., & Eusebio, A. (2018). Movement speed-accuracy trade-off in Parkinson's disease. Frontiers in neurology, 9, 897.
    Haken, H., Kelso, J. S., & Bunz, H. (1985). A theoretical model of phase transitions in human hand movements. Biological cybernetics, 51(5), 347-356.
    Hristovski, R., Davids, K., & Araújo, D. (2006). Affordance-controlled bifurcations of action patterns in martial arts. Nonlinear dynamics, psychology, and life sciences, 10(4), 409-444.
    Huys, R., & Jirsa, V. K. (Eds.). (2010). Nonlinear dynamics in human behavior (Vol. 328). Springer.
    Huys, R., Studenka, B. E., Rheaume, N. L., Zelaznik, H. N., & Jirsa, V. K. (2008). Distinct timing mechanisms produce discrete and continuous movements. PLoS computational biology, 4(4), e1000061.
    Ibáñez-Gijón, J., Buekers, M., Morice, A., Rao, G., Mascret, N., Laurin, J., & Montagne, G. (2017). A scale-based approach to interdisciplinary research and expertise in sports. Journal of Sports Sciences, 35(3), 290-301.
    Kay, B. A., Kelso, J. A., Saltzman, E. L., & Schöner, G. (1987). Space–time behavior of single and bimanual rhythmical movements: Data and limit cycle model. Journal of Experimental Psychology: Human Perception and Performance, 13(2), 178–192.
    Lamb, P. F., & Stöckl, M. (2014). On the use of continuous relative phase: Review of current approaches and outline for a new standard. Clinical Biomechanics, 29(5), 484-493.
    Mottet, D., Bootsma, R. (1999). The dynamics of goal-directed rhythmical aiming. Biological Cybernetics, 80, 235-245.
    Norouzi, E., Farsi, A., & Vaezmousavi, M. (2015). Effects of proprioceptive and visual disturbance on inphase and anti-phase hand performance. PHYSICAL TREATMENTS, 5(1), 41-47.
    Patil, G., Nalepka, P., Kallen, R.W., & Richardson, M.J. (2020). Hopf Bifurcations in Complex Multiagent Activity: The Signature of Discrete to Rhythmic Behavioral Transitions. Brain Science, 10(8), 536.
    Scully, D. M. (1986). Visual perception of technical execution and aesthetic quality in biological motion. Human Movement Science, 5(2), 185-206.
    Turvey, M. T. (1990). Coordination. American Psychologist, 45(8), 938–953.
    Warren, W. H. (2006). The dynamics of perception and action. Psychological review, 113(2), 358.

    下載圖示
    QR CODE