研究生: |
陳世堯 Chen, Shih-Yao |
---|---|
論文名稱: |
鐵電鉿基氧化物壓電響應及其電晶體雷射退火 Piezoresponse Force Microscopy of Hafnium-based Oxides and the Transistor Annealing by Laser |
指導教授: |
李敏鴻
Lee, Min-Hung |
學位類別: |
碩士 Master |
系所名稱: |
光電工程研究所 Graduate Institute of Electro-Optical Engineering |
論文出版年: | 2018 |
畢業學年度: | 106 |
語文別: | 中文 |
論文頁數: | 88 |
中文關鍵詞: | 鉿基氧化物 、負電容 、壓電力顯微鏡 、雷射退火 |
英文關鍵詞: | Hafnium-based oxides, Negative Capacitance, PFM, Laser Annealing |
DOI URL: | http://doi.org/10.6345/THE.NTNU.EPST.003.2018.E08 |
論文種類: | 學術論文 |
相關次數: | 點閱:151 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來因科技發展運算處理與記憶體的與日俱增,而VDD降低對於電子產品開發是相當重要的,俱鐵電效應之鉿鋯氧化物(Hafnium-based Oxides)閘極堆疊鐵電場效電晶體(Ferroelectric FET,FE-FET)有機會應用在降低次臨界擺幅(Subthreshold Swing)及記憶體使用,前者使VDD能夠再進一步的降低,後者提升鐵電記憶體殘餘極化(Remnant Polarization)量。
利用壓電響應顯微鏡(Piezoresponse Force Microscopy , PFM)驗證了鉿鋯氧化物(HfZrO2)中存在鐵電電滯曲線和極化引起的殘餘極化。並研究MFM(Metal–Ferroelectric–Metal)在不同下電極厚度的遲滯曲線改變,找出最佳化厚度。鐵電電晶體利用雷射退火使源/汲極活化,提升元件的ON-current,使得元件的運作速度更快。
Recently, ferroelectric technology has attracted a lot of attentions of CMOS and memory due to reduce VDD for a critical issue. Ferroelectric Hf-based oxide gate stack transistor has the opportunity to breakthrough the physical limitation of subthreshold swing (SS) and emerging memory application. The enhancement of Remnant Polarization is the direction for investigation in this work, as well as VDD to be further reduced.
PFM is verified the presence of ferroelectric hysteresis loop and remnant polarization in HfZrO2. This study focus on the hysteresis loop to optimize with different bottom electrode thicknesses of MFM capacitor. The ON-current of FeFET is obtained by utilizing laser annealing to activate the source/drain of FeFET, which has the opportunity to achieve high speed operation.
[1] FRAM Guide Book : FUJITSU SEMICONDUCTOR MEMORY MANUAL , 5th edition, 2005.
[2] International Technology Roadmap for Semiconductors (ITRS) Roadmap, 2009.
[3] M. H. Lee, J.-C. Lin, and C.-Y. Kao, “Hetero-Tunnel Field-Effect-Transistors with Epitaxially Grown Germanium on Silicon, ” IEEE Trans. on Electron Device, vol. 60, no.7, pp. 2423-2427, 2013.
[4] V. P.-H. Hu, P.-C. Chiu, A. B. Sachid, and C. Hu, “Negative capacitance enables FinFET and FDSOI scaling to 2 nm node, ” Electron Devices Meeting (IEDM), 2017 IEEE International, pp. 23.1. 1-23.1. 4, 2017.
[5] J. Müller, E. Yurchuk, T. Schlösser, J. Paul, R. Hoffmann, S. Müller, D. MarTiN, S. Slesazeck, P. Polakowski, J. Sundqvist, M. Czernohorsky, K. SeIDel, P. Kücher, R. Boschke, M. Trentzsch, K. Gebauer, U. Schröder and T. Mikolajick , “Ferroelectricity in HfO2 enables nonvolatile data storage in 28 nm HKMG, ’’ in VLSI Symp. Tech. Dig., 2012, pp. 25-26.
[6] N. Balke, P. Maksymovych, S. Jesse, A. Herklotz, A. Tselev, C. Beom Eom, I. Kravchenko, P. Yu, and S. Kalinin, “Differentiating Ferroelectric and Nonferroelectric Electromechanical Effects with Scanning Probe Microscopy, ’’ in ACSNANO VOL. 9 NO. 6, 2015.
[7] A. Chernikova, M. Kozodaev, A. Markeev, D. Negrov, M. Spiridonov, S. Zarubin, O. Bak, P. Buragohain, H. Lu, and E. Suvorova, “Ultrathin Hf0.5Zr0.5O2 ferroelectric films on Si, ” ACS applied materials & interfaces, vol. 8, no. 11, pp. 7232-7237, 2016.
[8] S. V. Kalinin, and D. A. Bonnell, “Imaging mechanism of piezoresponse force microscopy of ferroelectric surfaces, ” Physical Review B, vol. 65, no. 12, pp. 125408, 2002.
[9] A. Kholkin, S. Kalinin, A. Roelofs, and A. Gruverman, “Review of ferroelectric domain imaging by piezoresponse force microscopy, ” Scanning probe microscopy, pp. 173-214, Springer, 2007.
[10] http://www.chemicgoods.com/show.asp?id=60 , 20180702.
[11] https://www.budgetsensors.com/multipurpose-afm-probe-platinum-electriall-in-one , 20180702.
[12] 新拓科技股份有限公司/周書燈.
[13] K. R. Shea, and N. B. Rana, “Methods of removing metal-containing materials, ” Google Patents, pp. 602, table 27.3, 2007.
[14] A. Kholkin, S. Kalinin, A. Roelofs, and A. Gruverman, “Review of ferroelectric domain imaging by piezoresponse force microscopy, ” Scanning probe microscopy, pp.602, table27.3, Springer, 2007.
[15] J. Müller, T. Böscke, D. Bräuhaus, U. Schröder, U. Böttger, J. Sundqvist, P. Kücher, T. Mikolajick, and L. Frey, “Ferroelectric Zr0.5Hf0.5O2 thin films for nonvolatile memory applications, ” Applied Physics Letters, vol. 99, no. 11, pp. 112901, 2011.
[16] J. Müller, T. S. Böscke, U. Schröder, S. Mueller, D. Bräuhaus, U. Böttger, L. Frey, and T. Mikolajick, “Ferroelectricity in simple binary ZrO2 and HfO2, ” Nano letters, vol. 12, no. 8, pp. 4318-4323, 2012.
[17] 楊雲凱,“物理氣相沉積 (PVD) 介紹, ”國家奈米元件實驗室奈米通訊, vol. 22, no. 4, pp. 33-35, 2015.
[18] https://www.itrc.narl.org.tw/Bulletin/News/ald.php , 20180702.
[19] http://web1.knvs.tp.edu.tw/AFM/ch4.htm , 20180702.
[20] 陳宣翰,“氧化鉿鋯二極體與場效電晶體之記憶體應用, ”國立臺灣師範大學, 2017.
[21] http://www.sft.tw/support/b3.html, 20180702.
[22] https://zh.wikipedia.org/wiki/光子晶体, 20180702.
[23] http://www.altechna.com/product_details.php?id=261, 20180702.
[24] http://www.lasertech.tw/laser_noun.php?g_id=IyQlKiYlMTIlXiQqJio, 20180702.
[25] K. Kagawa, Y. Niwatsukino, A. Matsuno, and K. Shibahara, “Influence of pulse duration on KrF excimer laser annealing process for ultra shallow junction formation, ” Junction Technology, IWJT. Extended Abstracts of the Third International Workshop on, pp. 31-34, 2002.
[26] https://ekspla.com/product/nl300-series-compact-high-pulse-energy-lasers/, 20180702.
[27] https://www.coherent.com/measurement-control/measurement/labmax-top , 20180702.
[28] http://media.career.com.tw/industry/industry_main.asp?no=322p041&no2=29 , 20180702.
[29] K. M. Ahn, S. M. Kang, and B. T. Ahn, “Fabrication of high-quality polycrystalline silicon film by crystallization of amorphous silicon film using AlCl3 vapor for thin film transistors, ” Journal of The Electrochemical Society, vol. 158, no. 4, pp. H374-H378, 2011.
[30] 王怡超, 潘犀靈,“飛秒雷射退火:再結晶,控制佈植活化深度及薄膜電晶體製作的新技術, ”國立交通大學, 2007.