研究生: |
余秀菁 Yu, Hsiu-Chin |
---|---|
論文名稱: |
吸氣肌熱身對高強度反覆衝刺運動表現與恢復時間之影響 Effects of inspiratory muscle warm-up on high-intensity repeated sprint performance and recovery time |
指導教授: | 鄭景峰 |
學位類別: |
碩士 Master |
系所名稱: |
運動競技學系 Department of Athletic Performance |
論文出版年: | 2016 |
畢業學年度: | 104 |
語文別: | 中文 |
論文頁數: | 48 |
中文關鍵詞: | 熱身運動 、恢復能力 、肌肉血氧飽和度 、運動表現 |
英文關鍵詞: | warm-up, recovery ability, muscle oxygen saturation, performance |
DOI URL: | https://doi.org/10.6345/NTNU202204290 |
論文種類: | 學術論文 |
相關次數: | 點閱:251 下載:20 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
目的:本研究探討吸氣肌熱身對隨後高強度反覆衝刺運動表現與恢復時間之影響。方法:以12名女性甲組足球運動員為受試對象 (年齡,20.1 ± 1.4歲,身高,1.61 ± 0.4公尺,體重,55.4 ± 4.3公斤)。採重覆量數且平衡次序之實驗設計,受試者須進行三種不同實驗處理,包括吸氣肌熱身處理 (inspiratory muscle warm-up, IMW)、安慰劑處理 (placebo, PLA),與控制處理 (control, CON)。IMW與PLA是指分別以40%及15%的最大吸氣壓力 (maximum inspiratory mouth pressure, PImax),進行2組30下的吸氣肌熱身,CON則不進行吸氣肌熱身。各實驗處理後,受試者須完成15 × 20公尺的高強度反覆衝刺運動測驗,每趟衝刺休息時間介於5至30秒之間,依據受試者在恢復時間範圍內的主觀感覺。實驗過程中,分析每趟衝刺時間、休息時間、血乳酸、RPE (rating of perceived exertion)、RPB (rating of perceived breathlessness),以及腓腸肌的肌肉血氧飽和度。結果:在反覆衝刺測驗中的恢復後段 (11至15趟衝刺間的恢復時間),IMW顯著低於CON (IMW vs. CON,20.5 ± 3.6 vs. 23.2 ± 3.2秒,p < .05)。反覆衝刺運動表現在三種實驗處理間則未達顯著差異。在反覆衝刺測驗後5分鐘的PImax,IMW顯著高於PLA與CON (IMW vs. PLA vs. CON, 102.2 ± 10.5 vs. 95.8 ± 9.7 vs. 94.1 ± 11.3 cmH2O, p < .05)。在反覆衝刺測驗後的RPE,IMW顯著低於PLA (RPE,IMW vs. PLA,13.8 ± 1.4 vs. 15.8 ± 2.1分,p < .05)。在反覆衝刺測驗後的RPB,IMW顯著低於PLA與CON (RPB,IMW vs. PLA vs. CON,4.6 ± 1.3 vs. 5.4 ± 1.6 vs. 5.6 ± 1.1分,p < .05)。然而,組織氧合指標 (TSI) 在反覆衝刺測驗中的前段 (1至5趟),IMW顯著低於CON (IMW vs. CON, -9.60 ± 3.18 vs. -7.94 ± 3.01 %, p < .05)。結論:吸氣肌熱身能改善吸氣肌肌力與呼吸困難感覺,並促進高強度反覆衝刺後的恢復能力,然而,吸氣肌熱身活動可能會降低運動初期的肌肉氧飽和度。
Purpose: To investigate the effects of inspiratory muscle (IM) warm-up on subsequent high-intensity repeated sprint performance and recovery time. Methods: Twelve female Division I soccer players (age, 20.1 ± 1.4 yrs, height, 1.61 ± 0.4 m, body mass, 55.4 ± 4.3 kg) were recruited in this repeated measures and crossover designed study. All participants were requested to perform three different treatments, two sets of 30 breaths at 40% and 15% maximum inspiratory mouth pressure (PImax) were respectively peformed in inspiratory muscle warm-up (IMW) and placebo (PLA), but no IM warm-up activity was used in control (CON). After each treatment, all participants performed the repeated sprint test which consisted of 15 sprints of 20 meters with passive recovery. The recovery time of passive recovery, ranged from 5 to 30 seconds, was self-selected by participants based on their recovery feelings. The sprint time, recovery time, muscle oxygen saturation of gastrocnemius, blood lactate concentration, rating of perceived exertion (RPE), and perceived intensity of breathlessness sensation (RPB) were measured during the experiments. Results: The recovery time during sprint 11–15 of repeated sprint test in IMW was significantly lower than that in CON (IMW vs. CON, 20.5 ± 3.6 vs. 23.2 ± 3.2 sec, p < .05). No significant differences were found on repeated sprint performance among trials. The PImax at 5-min after repeated sprint test in IMW was significantly higher than those in PLA and CON (IMW vs. PLA vs. CON, 102.2 ± 10.5 vs. 95.8 ± 9.7 vs. 94.1 ± 11.3 cmH2O, p < .05). The RPE immediately after repeated sprint test in IMW was significantly lower than that in CON (IMW vs. PLA, 13.8 ± 1.4 vs. 15.8 ± 2.1, p < .05). The RPB immediately after repeated sprint test in IMW was also significantly lower than those in PLA and CON (IMW vs. PLA vs. CON, 4.6 ± 1.3 vs. 5.4 ± 1.6 vs. 5.6 ± 1.1, p < .05). However, the tissue saturation index (TSI) in IMW during sprint 1–5 was significantly lower than that in CON (IMW vs. CON, -9.60 ± 3.18 vs. -7.94 ± 3.01 %, p < .05). Conclusion: IMW could improve inspiratory muscle strength and RPB, thus enhancing the recovery ability during high-intensity repeated sprints. However, the IMW activities might decrease the muscle oxygen saturation at the beginning of repeated sprints.
一、 中文部分
江壽德 (1982)。呼吸生理學。臺北市:環球書社。
林正常 (2005)。運動生理學。臺北市:師大書苑。
林正常、李佳倫、何仁育、周峻忠、劉錦謀、林明儒、林慈芳、黃依婷 (譯) (2013) 。應用運動生理學。臺北市:藝軒圖書。 (Kraemer, W. J., Fleck, S. J., & Deschenes, M. R., 2011)。
邱皓政 (2010)。量化研究與統計分析 (五版)。臺北市:五南。
林貴福、張正琪、蔡忠昌、呂香珠、洪偉欽、朱真儀、鄭景峰、李佳倫、郭堉圻、蔡櫻蘭 (譯) (2009)。運動生理學。臺北市:禾楓書局。 (Wilmore, J. H., Costill, D. L., & Kenney, W. L., 2008)。
陳品卉 (2012)。吸氣肌熱身對高強度腳踏車間歇運動表現之影響。未出版碩士論文,國立臺灣師範大學,臺北市。
郭堉圻、莊富延 (2011)。吸氣肌訓練對衝刺型運動員無氧能力與疲勞恢復之影響。大專體育學期刊,13(4),461-469。
郭堉圻、蔣孝珍 (2011)。呼吸肌訓練在運動表現上的應用。中華體育季刊,23(3),55-61。
潘賢章、林正常、林信甫 (2006)。呼吸肌熱身對腳踏車運動時生理反應與衰竭時間的影響。臺大體育學報,9,39-54。
二、 英文部分
Balsom, P. D., Gaitanos, G. C., Ekblom, B., & Sjodin, B. (1994). Reduced oxygen availability during high intensity intermittent exercise impairs performance. Acta Physiologica Scandinavica, 152(3), 279-285.
Bhambhani, Y., Malik, R., & Mookerjee, S. (2007). Cerebral oxygenation declines at exercise intensities above the respiratory compensation threshold. Respiratory Physiology and Neurobiology, 156(2), 196-202.
Bishop, D, (2003). Warm up I: Potential mechanisms and the effects of passive warm up on exercise performance. Sports Medicine, 33(6), 439-454.
Bishop, D., Girard, O., & Mendez-Villanueva, A. (2011). Repeated-sprint ability part II: recommendations for training. Sports Medicine, 41(9), 741-756.
Bogdanis, G. C., Nevill, M. E., Boobis, L. H., & Lakomy, H. K. (1996). Contribution of phosphocreatine and aerobic metabolism to energy supply during repeated sprint exercise. Journal of Applied Physiology, 80(3), 876-848.
Borg, G. A. (1982). Psychophysical bases of perceived. Medicine and Science in Sports and Exercise, 14(5), 377-381.
Boushel1, R., & Piantadosi, C. A. (2000). Near-infrared spectroscopy for monitoring muscle oxygenation. Acta Physiologica Scandinavica, 168(4), 615-622
Boussana, A., Galy, O., Hue, O., Matecki, S., Varray, A., Ramonatxo, M., & Le Gallais, D. (2003). The effects of prior cycling and a successive run on respiratory muscle performance in triathletes. International Journal of Sports Medicine, 24(1), 63-70.
Boussana, A., Matecki, S., Galy, O., Hue, O., Ramonatxo, M., & Le Gallais, D. (2001). The effect of exercise modality on respiratory muscle performance in triathletes. Medicine and Science in Sports and Exercise, 33(12), 2036-2043.
Boutellier, U., & Piwko, P. (1992). The respiratory system as an exercise limiting factor in normal sedentary subjects. European Journal of Applied Physiology and Occupational Physiology, 64(2), 145-152.
Buchheit, M., Cormie, P., Abbiss, C. R., Ahmaidi, S., Nosaka, K. K., & Laursen, P. B. (2009). Muscle deoxygenation during repeated sprint running: Effect of active vs. passive recovery. International Journal of sponts Medicine, 30(6), 418-425.
Buchheit, M., & Ufland, P. (2011). Effect of endurance training on performance and muscle reoxygenation rate during repeated-sprint running. European Journal of Applied Physiology, 111(2), 293-301.
Buchheit, M., Ufland, P., Haydar, B., Laursen, P. B., & Ahmaidi, S. (2011). Reproducibility and sensitivity of muscle reoxygenation and oxygen uptake recovery kinetics following running exercise in the field. Clinical Physiology and Functional Imaging, 31(5), 337-346.
Burdon, J. G., Juniper, E. F., Killian, K. J., Hargreave, F. E., & Campbell, E. J. (1982). The perception of breathlessness in asthma. The American Review of Respiratory Disease, 126(5), 825-828.
Cheng, C. F., Tong, T. K., Kuo, Y. C., Chen, P. H., Huang, H. W., & Lee, C. L. (2013). Inspiratory muscle warm-up attenuates muscle deoxygenation during cycling exercise in women athletes. Respiratory Physiology and Neurobiology, 186(3), 296-302.
Duthie, G., Pyne, D., & Hooper, S. (2005). Time motion analysis of 2001 and 2002 super 12 rugby. Journal of Sports Sciences, 23(5), 523-530.
Enright, S. J., Unnithan, V. B., Heward, C., Withnall, L., & Davies, D. H. (2006). Effect of high-intensity inspiratory muscle training on lung volumes, diaphragm thickness, and exercise capacity in subjects who are healthy. Physical Therapy, 86(3), 345-354.
Ferrari, M., Mottola, L., & Quaresima, V. (2004). Principles, techniques, and limitations of near infrared spectroscopy. Canadian Journal of Applied Physiology, 29(4), 463-487.
Girard, O., Mendez-Villanueva, A., & Bishop, D. (2011). Repeated-sprint ability - part I: Factors contributing to fatigue. Sports Medicine, 41(8), 673-694.
Glaister, M. (2005). Multiple sprint work: Physiological responses, mechanisms of fatigue and the influence of aerobic fitness. Sports Medicine, 35(9), 757-777.
Griffiths, L. A., & McConnell, A. K. (2007). The influence of inspiratory and expiratory muscle training upon rowing performance. European Journal of Applied Physiology, 99(5), 457-466.
Harms, C. A., Wetter, T. J., St, Croix, C. M., Pegelow, D. F., & Dempsey, J. A. (2000). Effects of respiratory muscle work on exercise performance. Journal of Applied Physiology, 89(1), 131-138.
Jobsis, F. F. (1977). Noninvasive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters. Science, 198(4323), 1264-1267
Johnson, M. A., Sharpe, G. R., & Brown, P. I. (2007). Inspiratory muscle training improves cycling time-trial performance and anaerobic work capacity but not critical power. European Journal of Applied Physiology, 101(6), 761-770.
Keramidas, M. E., Kounalakis, S. N., Eiken, O., & Mekjavic, I. B. (2011). Muscle and cerebral oxygenation during exercise performance after short-term respiratory work. Respiratory Physiology and Neurobiology, 175(2), 247-254.
Legrand, R., Marles, A., Prieur, F., Lazzari, S., Blondel, N., & Mucci, P. (2007). Related trends in locomotor and respiratory muscle oxygenation during exercise. Medicine and Science in Sports and Exercise, 39(1), 91-100.
Lin, H., Tong, T. K., Huang, C., Nie, J., Lu, K., & Quach, B. (2007). Specific inspiratory muscle warm-up enhances badmintion footwork performance. Applied Physiology, Nutrition, and Metabolism, 32(6), 1082-1088.
Mador, M. J., Bozkanat, E., & Kufel, T. J. (2003). Quadriceps fatigue after cycle exercise in patients with COPD compared with healthy control subjects. Chest Journal, 123(4), 1104-1111.
McCully, K. K., & Hamaoka, T. (2000). Near-infrared spectroscopy: What can it tell us about oxygen saturation in skeletal muscle? Exercise and Sport Sciences Reviews, 28(3), 123-127.
Ohya, T., Hagiwara, T., & Suzuki, Y. (2015). Inspiratory muscle warm-up has no impact on performance or locomotor muscle oxygenation during high-intensity intermittent sprint cycling exercise. Springerplus, doi: 10.1186/s40064-015-1355-2.
Petrovic, M., Reiter, M., Zipko, H., Pohl, W., & Wanke, T. (2012). Effects of inspiratory muscle training on dynamic hyperinflation in patients with COPD. International Journal of Chronic Obstructive Pulmonary Disease, 7, 797-805.
Rampinini, E., Bishop, D., Marcora, S. M., Ferrari, Bravo, D., Sassi, R., & Impellizzeri, F. M. (2007). Validity of simple field tests as indicators of match-related physical performance in top-level professional soccer players. Internatonal Journal of Sports Medicine, 28(3), 228-235.
Romer, L. M., McConnell, A. K., & Jones, D. A. (2002). Effects of inspiratory muscle training upon recovery time during high intensity, repetitive sprint activity. International Journal of Sports Medicine, 23(5), 353-360.
Rupp, T., & Perrey, S. (2008). Prefrontal cortex oxygenation and neuromuscular responses to exhaustive exercise. European Journal of Applied Physiology, 102(2), 153-163.
Sharkey, B. J., & Gaskill, S. E. (2006). Sport physiology for coaches (pp. 127). Human Kinetics.
Spencer, M., Bishop, D., Dawson, B., & Goodman, C. (2005). Physiological and metabolic responses of repeated-sprint activities: Specific to field-based team sports. Sports Medicine, 35(12), 1025-1044.
Suzuki, S., Takasaki, S., Ozaki, T., & Kobayashi, Y. (1999). A tissue oxygenation monitor using spatially resolved spectroscopy. The International Society for Optical Engineering, 3597, 582-592.
Tong, T. K., & Fu, F. H. (2006). Effect of specific inspiratory muscle warm-up on intense intermittent run to exhaustion. European Journal of Applied Physiology, 97(6), 673-680.
Tong, T. K., Fu, F. H., Chung, P. K., Eston, R., Lu, K., Quach, B., Nie, J., & So, R. (2008). The effect of inspiratory muscle training on high-intensity, intermittent running performance to exhaustion. Applied Physiology, Nutrition, and Metabolism, 33(4), 671-681.
Tong, T. K., Fu, F. H., Eston, R., Chung, P. K., Quach, B., & Lu, K. (2010). Chronic and acute inspiratory muscle loading augment the effect of a 6-week interval program on tolerance of high-intensity intermittent bouts of running. Journal of Strength and Conditioning Research, 24(11), 3041-3048.
Tomlin, D. L., & Wenger, H. A. (2001). The relationship between aerobic fitness and recovery from high intensity intermittent exercise. Sports Medicine, 31(1), 1-11.
Ufland, P., Ahmaidi, S., & Buchheit, M. (2013). Repeated-sprint performance, locomotor profile and muscle oxygen uptake recovery: Effect of training background. International Journal of Sports Medicine, 34(10), 924-930.
Volianitis, S., McConnell, A. K., Koutedakis, Y., & Jones, D. A. (1999). The influence of prior activity upon inspiratory muscle strength in rowers and non-rowers. International Journal of Sports Medicine, 20(8), 542-547.
Volianitis, S., McConnell, A. K., Koutedakis, Y., & Jones, D. A. (2001a). Specific respiratory warm-up improves rowing performance and exertional dyspnea. Medicine and Science in Sports and Exercise, 33(7), 1189-1193.
Volianitis, S., McConnell, A. K., Koutedakis, Y., McNaughton, L., Backx, K., & Jones, D. A. (2001b). Inspiratory muscle training improves rowing performance. Medicine and Science in Sports and Exercise, 33(5), 803-809.
Wen, A. S., Woo, M. S., & Keens, T. G. (1997). How many maneuvers are required to measure maximal inspiratory pressure accurately. Chest, 111(3), 802-807.
Wilson, E. E., McKeever, T. M., Lobb, C., Sherrff, T., Gupta, L., Hearson, G., Martin, N., Lindley, M. R., & Shaw, D. E. (2013). Respiratory muscle specific warm-up and elite swimming performance. British Journal of Sponts Medicine, 48(9), 789-791.
Wittekind, A., & Beneke, R. (2011). Metabolic and performance effects of warm-up intensity sprint cycling. Scandinavian Journal of Medicine and Science in Sports, 21(6) 201-207.