簡易檢索 / 詳目顯示

研究生: 洪依婷
Yi-Ting Hung
論文名稱: 藉由Morita-Baylis-Hillman反應發展出串聯式三組分反應及其應用於多官能基α,β-不飽和酮類之合成
Tandem Three-Component Reactions via Morita-Baylis-Hillman Reactions and their Application in the Syntheses of Functionalized α,β-Unsaturated Ketones
指導教授: 林文偉
Lin, Wen-Wei
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 189
中文關鍵詞: Morita-Baylis-Hillman反應三組分反應Michael加成α,β-不飽和酮類
英文關鍵詞: Morita-Baylis-Hillman Reactions, Tandem, Three-Component Reactions, Michael addition, α,β-Unsaturated Ketones
論文種類: 學術論文
相關次數: 點閱:135下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Morita-Baylis-Hillman 產物可藉由β-碳上羥基活化羰基,因此為一個很好的Michael accepter。本實驗室發展出一個具有高度選擇性的三組分反應,利用單一步驟的一鍋化反應,藉由不同芳香族醛類57、高活性的烯類22或37及醯胺67或78在EtPPh2或PPh3的催化下成功的合成一具有多官能基的三組分產物,產率為41-97%。其反應機構是先進行Morita-Baylis-Hillman反應,接著在不需另外加入其他的鹼的條件下,被去質子化的親核性試劑會對Morita-Baylis-Hillman 產物進行Michael加成反應,生成碳-氮鍵後即得到產物。另外,我們也發展出利用57、37及78為反應物,經由EtPPh2或PPh3的催化進行此一鍋化的三組分反應,且不需進行純化,可直接進行醯化反應和消去反應,以合成α,β-不飽和酮類,所得產率為35-83%,並且具有很好的立體選擇性(E/Z = 95/5-90/10)。

    The Morita-Baylis-Hillman reaction adduct, starting from actived alkene and aldehyde, is a good Michael accepter according to the ester or ketone function activated by the neighboring hydroxy group. We have developed a general procedure for a new type of chemoselective three-component reaction with aromatic aldehyde 57, activated alkenes 22 or 37 and amide 67 or 78 catalyzed by EtPPh2 or PPh3. The reaction mechanism is proposed to undergo the Morita-Baylis-Hillman reaction followed by Michael addition of nucleophiles toward the Morita-Baylis-Hillman adduct. To the best of our knowledge, there are no reports of successful reactions or related studies that utilize this strategy. The reaction condition is very mild, and numerous highly functional three-component adducts in 41-97% yield. In addition, we have developed one-pot procedure for the syntheses of polyfunctional α,β-unsaturated ketones via our designed three-component reactions and acylation of the corresponding adducts followed by elmination. The reaction can be efficiently afforded in 35-83% yields with high stereoselectivities (E/Z = 95/5-90/10).

    中文摘要 I 英文摘要 II 第一章 緒論 1-1 前言 1 1-2 多組分反應 1 1-2-1 多組分反應的定義及其效能 1 1-2-2 多組分反應的歷史背景與文獻介紹 2 1-3 Baylis-Hillman反應的反應性與其產物的衍生應用 5 1-3-1 提升Baylis-Hillman 反應之反應速率 7 1-3-1-1 外加能量 8 1-3-1-2 路易士酸、金屬催化劑及溶劑的效應 10 1-3-1-3 受質對反應性之影響 13 1-3-2 Baylis-Hillman 反應催化劑的探討 15 1-3-3 Baylis-Hillman反應之應用 16 1-3-4 非常態的Baylis-Hillman反應 21 1-4 研究動機 26 第二章 實驗結果與討論 27 2-1 丙烯酸甲酯為Michael acceptor進行三組分反應 27 2-1-1 反應條件最佳化 27 2-1-2 不同受質對此三組分反應的影響 29 2-1-3 反應機構之探討 34 2-2 乙烯基甲基酮為Michael acceptor進行三組分反應及其衍生 40 2-2-1 此三組分反應所適用的催化劑及其反應性之探討 40 2-2-2 一鍋化進行三組分反應並合成多官能基的烯類化合物 42 2-3 親核性試劑之探討 46 2-4 結論 47 第三章 實驗部分 48 3-1 分析實驗及基本實驗操作 48 3-2 實驗步驟及光譜數據 50 3-2-1標準實驗程序 50 3-2-2丙烯酸甲酯為Michael acceptor進行三組分反應 51 3-2-3乙烯基甲基酮為Michael acceptor進行三組分反應及其衍生 63 3-3 參考文獻 76 附錄一、1H-NMR及13C-NMR光譜圖 79 附錄二、X-ray單晶繞射結構解析圖及數據 157

    [1] D. Basavaiah, A. Rao, T. Satyanarayana, Chem. Rev. 2003, 103, 811.
    [2] H. Bienayme, C. Hulme, G. Oddon, P. Schmitt, Chem. Eur. J. 2000, 6, 3321.
    [3] A. Domling, I. Ugi, Angew. Chem. Int. Ed. 2000, 39, 3168.
    [4] a) I. Ugi, A. Dömling, W. Hörl, Endeavour 1994, 18, 115; b) R. Orru, M. de Greef, Synthesis 2003, 10, 1471; c) M. Passerini, Gazz. Chim. Ital. 1921, 51, 121; d) M. Passerini, Gazz. Chim. Ital. 1921, 51, 181.
    [5] A. Strecker, Liebigs Ann. Chem. 1850, 75, 27.
    [6] I. C. Cotterill, A. Y. Usyatinsky, J. M. Arnold, D. S. Clark, J. S. Dordick, P. C. Michels, Y. L. Khmelnitsky, Tetrahedron Lett. 1998, 39, 1117.
    [7] A. Hantzsch, Ber. Dtsch. Chem. Ges 1890, 23, 1474.
    [8] H. Bergs, Ger. pat. 1929, 566, 094.
    [9] H. Bucherer, H. Barsch, J. Prakt. Chem. 1934, 140, 151.
    [10] J. Zhang, A. Jacobson, J. R. Rusche, W. Herlihy, J. Org. Chem. 1999, 64, 1074.
    [11] G. Ma, J. Jiang, M. Shi, Y. Wei, Chem. Commun. 2009, 5496.
    [12] K. Morita, Z. Suzuki, H. Hirose, Bull. Chem. Soc. Jap. 1968, 41, 2815.
    [13] J. S. Hill, N. S. Isaacs, Tetrahedron Lett. 1986, 27, 5007.
    [14] M. L. Bode, P. T. Kaye, Tetrahedron Lett. 1991, 32, 5611.
    [15] a) K. E. Price, S. J. Broadwater, B. J. Walker, D. T. McQuade, J. Org. Chem. 2005, 70, 3980; b) R. Robiette, V. K. Aggarwal, J. N. Harvey, J. Am. Chem. Soc. 2007, 129, 15513.
    [16] W. Lee, K. Yang, K. Chen, Chem. Commun. 2001, 1612.
    [17] D. Basavaiah, K. Rao, R. Reddy, Chem. Soc. Rev. 2007, 36, 1581.
    [18] S. Rafel, J. Leahy, J. Org. Chem. 1997, 62, 1521.
    [19] W. Almeida, F. Coelho, Tetrahedron Lett. 1998, 39, 8609.
    [20] D. Basavaiah, P. Rao, R. Hyma, Tetrahedron 1996, 52, 8001.
    [21] M. Kundu, S. Mukherjee, N. Balu, R. Padmakumar, S. Bhat, Synlett 1994, 1994, 444.
    [22] V. K. Aggarwal, A. Mereu, G. J. Tarver, R. McCague, J. Org. Chem. 1998, 63, 7183.
    [23] V. Aggarwal, D. Dean, A. Mereu, R. Williamss, J. Org. Chem. 2002, 67, 510.
    [24] P. Moisan, Angew. Chem. Int. Ed. 2001, 40, 3726

    [25] K. Morita, T. Kobayashi, Bull. Chem. Soc. Jpn. 1969, 42, 2732.
    [26] M. Shi, Y.-H. Liu, Org. Biomol. Chem. 2006, 4, 1468.
    [27] V. Singh, S. Batra, Tetrahedron 2008, 64, 4511.
    [28] K. Lee, S. Gowrisankar, J. Kim, Bull. Korean Chem. Soc. 2005, 26, 1481.
    [29] Y. Chung, H. Lee, S. Hwang, J. Kim, Bull. Korean Chem. Soc. 2001, 22, 799.
    [30] K. Lee, S. Kim, J. Kim, Tetrahedron Lett. 2006, 47, 977.
    [31] W. Wang, M. Yu, Tetrahedron Lett. 2004, 45, 7141.
    [32] P. Perlmutter, C. C. Teo, Tetrahedron Lett. 1984, 25, 5951.
    [33] T. Kataoka, T. Iwama, S.-i. Tsujiyama, T. Iwamura, S.-i. Watanabe, Tetrahedron 1998, 54, 11813.
    [34] a) M. Taniguchi, T. Hino, Y. Kishi, Tetrahedron Lett. 1986, 27, 4767; b) S. Uehira, Z. Han, H. Shinokubo, K. Oshima, Org. Lett. 1999, 1, 1383.
    [35] a) G. P. Black, F. Dinon, S. Fratucello, P. J. Murphy, M. Nielsen, H. L. Williams, N. D. A. Walshe, Tetrahedron Lett. 1997, 38, 8561; b) E. L. Richards, P. J. Murphy, F. Dinon, S. Fratucello, P. M. Brown, T. Gelbrich, M. B. Hursthouse, Tetrahedron 2001, 57, 7771.
    [36] a) V. K. Aggarwal, A. M. M. Castro, A. Mereu, H. Adams, Tetrahedron Lett. 2002, 43, 1577; b )M. Shi, Y.-M. Xu, Tetrahedron: Asymmetry 2002, 13, 1195.
    [37] a) M. Shi, C.-Q. Li, J.-K. Jiang, Chem. Commun. 2001, 833; b) M. Shi, C.-Q. Li, J.-K. Jiang, Tetrahedron 2003, 59, 1181.
    [38] X. Wang, F. Fang, C. Zhao, S.-K. Tian, Tetrahedron Lett. 2008, 49, 6442.
    [39] Z. Yang, M. Fonovic, S. H. L. Verhelst, G. Blum, M. Bogyo, Bioorg. Med. Chem 2009, 17, 1071.
    [40] 實驗結果與討論中的2-1,此章節其最佳化及反應機構探討為徐祥恩學長與我共同合作完成。

    無法下載圖示 本全文未授權公開
    QR CODE