簡易檢索 / 詳目顯示

研究生: 張文翰
Chang, Wen Han
論文名稱: 二硒化錸機械剝離前後及氧致缺陷變化
ReSe2 Surface before and after Mechanical Exfoliation & Oxygen-Induced defects change
指導教授: 傅祖怡
Fu, Tsu-Yi
口試委員: 傅祖怡
Fu, Tsu-Yi
林文欽
Lin, Wen-Chin
陳瑞山
Chen, Ruei-San
口試日期: 2022/06/17
學位類別: 碩士
Master
系所名稱: 物理學系
Department of Physics
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 61
中文關鍵詞: 掃描穿隧式顯微鏡二硒化錸曝氧氣
英文關鍵詞: STM, ReSe2, Exposed oxygen
DOI URL: http://doi.org/10.6345/NTNU202201049
論文種類: 學術論文
相關次數: 點閱:110下載:18
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 二硒化錸 (ReSe2) 層狀結構的半導體屬於過渡金屬二硫族化物 (TMD) 材料。層狀材料 (二維材料) 發展快速,在半導體產業上有廣泛的應用。而我們使用超高真空環境下,進行STM 與 STS 測量,來了解ReSe2表面物理特性。
    利用機械剝離方法 (Fresh) 觀測ReSe2前、後、曝氧表面,發現表面上有相關的變化。形貌上我們可以得知主要由亮暗點所構成,以往ReS2、MoS2 、MoSe2同屬二維材料的樣品中亦可觀察到亮暗點的變化,而ReSe2中更可以發現曝氧時顯著的差異於表面上呈現,我們可透過比對其他二維材料樣品後發現,ReSe2樣品於表面上吸附氧的能力有所不同。此次實驗在室溫下STM表面掃圖也較為清晰,更於小尺度時有清晰的原子結構表現。
    我們接著使用掃描穿隧能譜 (STS) 進行電性上的分析,較為明顯的比較於曝氧後與曝大氣後有相關,這也是我們曝氧的目的,進而佐證大氣中影響的主要角色為何?
    實驗的主體為形貌分析與電性分析,主要以分段放氧來分析ReSe2樣品,比較後可發現氧氣在ReSe2表面上有更強的吸附力,也是能隙調控的重要條件之一。

    Rhenium diselenide (ReSe2) layered semiconductors are transition metal dichalcogenide (TMD) materials. Layered materials (two-dimensional materials) are developing rapidly and have a wide range of applications in the semiconductor . We use the ultra-high vacuum environment to perform STM and STS measurements in order to understand the physical properties of the ReSe2 surface.
    The mechanical exfoliation method (Fresh) was used to observe the surface of ReSe2 before, after, and oxygen exposure, and it was found that there were relevant changes on the surface. From the morphology, we can know that it is mainly composed of bright and dark points. In the past, ReS2、MoS2 and MoSe2 (two-dimensional materials) . The change of bright and dark spots can also be observed. In ReSe2, a significant difference can be found when oxygen exposed . On the surface, we can find that the ability of ReSe2 samples to adsorb oxygen on the surface is different by comparing with other two-dimensional material samples . In this experiment, the STM at room temperature is also clearer, and the atomic structure is more clearly expressed at small scales.
    And then, we also used scanning tunneling spectroscopy (STS) to analyze the electrical properties, which is more obviously related to the air exposure (After Fresh) and after oxygen exposure.
    The main subject of the experiment is morphology analysis and electrical analysis. Different from previous experiments, ReSe2 samples are mainly analyzed by staged observation. After comparison, it can be found that oxygen has a stronger adsorption on the surface of ReSe2. One of the important conditions for adjusting the energy gap.

    致謝 I 摘要 II Abstract III 圖表目錄 V 目錄 X 第一章 緒論 1 1.1 二硒化錸 (Rhenium disulfide, ReSe2) 基本性質 2 第二章 實驗原理 4 2.1 量子穿隧效應 (Quantum tunneling effect ) 4 2.2 侷域態密度 (Local of density of state, LDOS) 5 2.3 掃描穿隧能譜 (Scanning tunneling spectroscopy, STS) 5 2.4 探針引發的能帶彎曲 (Tip induced band bending, TIBB) 6 2.5 STM工作模式 7 2.5.1 定電流模式 7 2.5.2 定高度模式 8 2.5.3 電流影像穿隧能譜 (Current image tunneling spectroscopy, CITS) 9 第三章 實驗儀器與方法 10 3.1掃描穿隧電子顯微鏡 (Scanning tunneling microscope, STM) 10 3.1.1 掃描頭 12 3.1.2 步進器 13 3.1.3 避震平台與掃描平台 14 3.2 超高真空系統 16 3.2.1 真空壓力計 17 3.2.2 殘氣分析儀 (Residual Gas Analyzers, RGA) 18 3.2.3 油封式機械幫浦 19 3.2.4 渦輪分子幫浦 20 3.2.5 離子幫浦 21 3.2.6 鈦昇華幫浦 22 3.3 二硒化錸實驗方法 23 3.3.1 二硒化錸機械剝離 (Fresh) 23 3.3.2 二硒化錸曝氧處理 24 第四章 實驗結果與討論 26 4.1 二硒化錸的表面結構與缺陷分析 26 4.1.1二硒化錸的晶格結構檢測 26 4.1.2 大尺度二硒化錸於不同偏壓下的缺陷分析 28 4.1.3 小尺度二硒化錸的缺陷種類[40] 30 4.1.4 大尺度二硒化錸的缺陷種類分佈 33 4.2 二硒化錸在曝氧形貌分析 39 4.2.1 大尺度二硒化錸曝氧10 ~ 30 min 40 4.2.2 大尺度二硒化錸Non-Fresh/Fresh/After Fresh/O2比較 43 4.3 二硒化錸在Non-Fresh/Fresh/After Fresh電性分析 49 4.3.1 二硒化錸掃描穿隧能譜分析 50 4.3.2 二硒化錸、二硒化鉬、二硫化鉬曝氧比較[41,43] 50 第五章 結論 56 參考文獻 58

    [1] G. Yeap, “Smart mobile SoCs driving the semiconductor industry: Technology trend, challenges and opportunities”, 2013 IEEE International Electron Devices Meeting, pp. 1.3.1-1.3.8., 2013.
    [2] R. Nikandish et al., “Semiconductor Quantum Computing: Toward a CMOS quantum computer on chip”, in IEEE Nanotechnology Magazine, vol. 15, no. 6, pp. 8-20, 2021.
    [3] Novoselov KS et al., “Electric field effect in atomically thin carbon films”, Science, 2004.
    [4] K. Novoselov et al., “Two-dimensional atomic crystals”, Proceedings of the National Academy of Sciences of the United States of America, 2005.
    [5] W. Feng et al., “Properties and applications of 2D non-graphene materials”, Nanotechnology, 2015.
    [6] K.F. Mak et al., “Atomically Thin MoS2: A New Direct-Gap Semiconductor”, Physical Review Letters, 2010.
    [7] S.-L. Li, et al., “Charge transport and mobility engineering in two-dimensional transition metal chalcogenide semiconductors”, Chemical Society Reviews, 2016.
    [8] Q.H. Wang et al., “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides”, Nat Nanotechnol, 2012.
    [9]M. Kan et al., “Photoluminescence Quenching in Single-Layer MoS2 via Oxygen Plasma Treatment”, The Journal of Physical Chemistry C, 2014.
    [10]Xiao Li, Hongwei Zhu, “Two-dimensional MoS2: Properties, preparation, and applications”, Journal of Materiomics, Volume 1, Issue 1, 2015.
    [11] Weifeng Zhang et al., “Topological structures of transition metal dichalcogenides: A review on fabrication, effects, applications, and potential”, Volume3, Issue2, Pages 133-154, 2020.
    [12] Wonbong Choi et al., “Recent development of two-dimensional transition metal dichalcogenides and their applications”, Materials Today, Volume 20, Issue 3, Pages 116-130, 2017.
    [13] Zhongming Wei et al., “Various Structures of 2D Transition-Metal Dichalcogenides and Their Applications”, Volume2, Issue11, 2018.

    [14] A.K. Geim, I.V. Grigorieva, “Van der Waals heterostructures”, Nature, 2013.
    [15] Hart et al., “Electronic bandstructure and van der Waals coupling of ReSe2 revealed by high-resolution angle-resolved photoemission spectroscopy”, Sci Rep 7, 2017.
    [16] Yi, Min & Shen, Zhigang, “A review on mechanical exfoliation for scalable production of graphene”, J. Mater. Chem. A. 2015.
    [17] Enlai Gao et al., “Mechanical exfoliation of two-dimensional materials”, Journal of the Mechanics and Physics of Solids, Volume 115, Pages 248-262, 2018.
    [18]維基百科,
    https://en.wikipedia.org/wiki/Rhenium_diselenide.
    [19] Byunggil Kang et al., “Ambipolar transport based on CVD-synthesized ReSe2”, 2D Materials, Volume 4, Number 2, 2017.
    [20] Hafeez et al., “Rhenium dichalcogenides (ReX2, X = S or Se): an emerging class of TMDs family”, Materials Chemistry Frontiers, Royal Society of Chemistry (RSC), 2017.
    [21] Jiang, S. et al., “Direct synthesis and in situ characterization of monolayer parallelogrammic rhenium diselenide on gold foil”, Commun Chem 1, 2018.
    [22] Hong-Xia Zhong et al., “Quasiparticle band gaps, excitonic effects, and anisotropic optical properties of the monolayer distorted 1T diamond-chain structures ReS2 and ReSe2”, Phys. Rev. B 92, 2015.
    [23] Wolverson, D. et al., “Raman spectra of monolayer, few-layer, and bulk ReSe2: an anisotropic layered semiconductor”, ACS Nano 8, 2014.
    [24] Yang, Y. et al., “Tuning the optical, magnetic, and electrical properties of ReSe2 by nanoscale strain engineering”, Nano Lett, 2015.
    [25] Arora, A. et al., “Highly anisotropic in-plane excitons in atomically thin and bulklike 1T’-ReSe2”, Nano Lett. 17, 2017.
    [26] Chris M. Corbet et al., “Improved contact resistance in ReSe2 thin film field-effect transistors”, Appl. Phys. Lett. 108, 2016.
    [27] R.Shankar, “Principles of Quantum Mechanics”, p167-175.
    [28] G.J. de Raad et al., “Interplay between tipinduced band bending and voltage-dependent surface corrugation on GaAs(110) surfaces”, Physical Review B, 2002.
    [29] R. Dombrowski et al., “Tip-induced band bending by scanning tunneling spectroscopy of the states of the tip-induced quantum dot on InAs(110) ”, Physical Review B, 1999.
    [30] Naoki Yokoi et al., “Change in Scanning Tunneling Microscope (STM) Tip Shape during Nanofabrication”, Jpn. J. Appl. Phys. 32 L129, 1993.
    [31] Songbin Cui, Tae-Hwan Kim, and Ungdon Ham, “Influence of the Tip Shape on Scanning Tunneling Luminescence Spectra: Implications for Nanomaterial Characterization”, ACS Applied Nano Materials 4 (1), 29-32, 2021.
    [32] Satoshi Watanabe and Masakazu Aono, “Effects of the tip shape on scanning tunneling microscope images: First‐principles calculations”, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena 12, 1994.
    [33] 廖英凱, 掃描穿隧能譜-用穿隧效應,洞察量子天地, 研之有物, 中研院, 2017.
    [34] 維基百科,
    https://zh.wikipedia.org/wiki/壓電效應
    [35] 蘇青森, 真空技術精華, 五南出版, 台灣, 2009.
    [36] 國科會精密儀器發展中心, 真空技術與應用, 全華圖書, 台灣, 2004.
    [37] 國科會精儀中心, 真空技術與應用
    [38] Globalsino, Ion Getter Pumps,
    https://www.globalsino.com/EM/page4320.html
    [39] Ryan Plumadore et al., “Prevalence of oxygen defects in an in-plane anisotropic transition metal dichalcogenide”, Phys. Rev. B 102, 2020.
    [40] Yong Zhu et al., “Anisotropic point defects in rhenium diselenide monolayers”, iScience, Volume 24, Issue 12, 2021.
    [41] 温柏淯, 通過掃描穿隧顯微鏡研究二硫化鉬缺陷的形成與對其電子特性影響, 碩士論文, 台灣, 2021.
    [42] 盧奕宏, 通過掃描式穿隧顯微鏡比較機械剝離法前後二硫化錸的電子特性, 碩士論文, 台灣, 2017.
    [44] Hqgraphene,
    http://www.hqgraphene.com/ReSe2.php
    [45] K.K. Tiong, C.H. Ho, Y.S. Huang, “The electrical transport properties of ReS2 and ReSe2 layered crystals”, Solid State Communications, 1999.
    [43] 陳泓儒, 機械剝離法前後二硒化鉬掃描穿隧式顯微術之研究, 碩士論文, 2020.
    [44] J. H. Park, A. Sanne, Y. Guo, M. Amani, K. Zhang, H. C. P. Movva, J. A. Robinson, A. Javey, J. Robertson, S. K. Banerjee et al., “Defect passivation of transition metal dichalcogenides via a charge transfer van der Waals interface”, Sci. Adv. 3, e1701661 (2017).

    下載圖示
    QR CODE