研究生: |
簡品婷 Chien, Pin-Ting |
---|---|
論文名稱: |
藍光暴露時間和強度對小鼠視網膜之光毒性效應 Phototoxicity effects of blue light exposure time and intensity in mice retina |
指導教授: |
吳啟豪
Wu, Chi-Hao |
口試委員: |
謝佳倩
Hsieh, Chia-Chien 葉宛儒 Yeh, Wan-Ju 吳啟豪 Wu, Chi-Hao |
口試日期: | 2022/09/16 |
學位類別: |
碩士 Master |
系所名稱: |
營養科學碩士學位學程 Graduate Program of Nutrition Science |
論文出版年: | 2022 |
畢業學年度: | 110 |
語文別: | 中文 |
論文頁數: | 72 |
中文關鍵詞: | 藍光 、光化學毒性 、氧化壓力 、細胞凋亡 、視網膜損傷 |
英文關鍵詞: | blue light, photochemical toxicity, oxidative stress, apoptosis, retinal damage |
研究方法: | 實驗設計法 |
DOI URL: | http://doi.org/10.6345/NTNU202201868 |
論文種類: | 學術論文 |
相關次數: | 點閱:407 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
根據DIGITAL 2022–Global Overview報告顯示,全球每人每日有將近7小時使用智慧型手機、平板以及電腦等電子設備連接網路的時間,此意昧著扣除睡眠,人眼有超過40%的清醒時間暴露於藍光 (blue light, BL)的環境中。BL因波長短能量高能穿透眼球直達視網膜,藉由刺激活性氧物質 (reactive oxygen species, ROS)生成,造成視網膜組織之光化學毒性 (photochemical toxicity)與相關眼病變。本研究之目的在於探討BL之照射強度與暴露時間對生物體之視網膜損傷效應,實驗選用9週齡雄性ICR小鼠,分別探討短期高強度BL (short-term high-intensity BL)與長期低強度BL (long-term low-intensity BL)照射模式對於視網膜之影響。以hematoxylin and eosin (H&E) staining分析視網膜組織型態之病理變化;以免疫組織化學染色 (immunohistochemistry, IHC)分析視紫質 (rhodopsin)、8-羥基去氧鳥苷 (8-OHdG)、介白素1β (interleukin-1β, IL-1β)、cleaved caspase-3及膠質纖維酸性蛋白 (glial fibrillary acidic protein, GFAP)表現;以視網膜電位圖 (electroretinogram, ERG)評估感光細胞功能。結果顯示,實驗小鼠每日經BL LED (465 ± 10 nm, 5000 lux)照射6小時連續5日,其視網膜外核層 (outer nuclear layer, ONL)、感光細胞內外節 (inner segment/ outer segment, IS/OS)及內核層 (inner nuclear layer, INL)之組織型態與未照射BL組比較無顯著差異 (p < 0.05);眼底鏡 (fundus photography)與眼底螢光血管攝影 (fluorescein angiography)亦無出現血管滲漏、血管增生與黃斑部病變之現象。我們另模擬日常環境BL照度,將實驗小鼠暴露於108 lux (44.8 µW/cm2)之BL LED,進行為期4–28週,每日6小時之長期低強度模式照射。實驗小鼠經低照度BL照射4週可導致ONL細胞核數減少30%;照射至第8週造成ONL平均厚度變薄,且伴隨rhodopsin表現下降30%與8-OHdG表現增加4.7倍,此顯示暴露於低照度BL環境中4–8週,視網膜感光細胞可因BL誘發之氧化壓力開始產生損傷效應。連續照射12週之小鼠其IS/OS層厚度開始減少,同時可見氧化壓力指標8-OHdG相較於之前時間點,其表現大幅提升約2.5倍;同時cleaved caspase-3與GFAP表現上升,顯示感光與神經細胞凋亡以及Müller細胞活化的現象。上述各項分析指標均隨BL暴露時間呈漸進式上升的現象,在藍光連續照射20及28週時達到最顯著之損傷效應。然而促發炎細胞激素IL-1β之表現與未照射BL組比較,於各個時間點並無顯著差異 (p > 0.05)。綜合上述,相較於短期高強度之BL照射,持續性的暴露於低強度BL更可能是導致視網膜損傷的危險因子。本研究模擬生活環境之低照度BL照射條件,嘗試建立更接近生活環境之藍光動物試驗平台,期望能作為日後開發抗藍光護眼保健食品之參考。
According to the DIGITAL 2022: Global Overview Report, people worldwide spend nearly 7 h a day using electronic devices such as smartphones, tablets, and computers to connect to the Internet. The human eye, thus, is exposed to blue light (BL) for more than 40% of the waking time. Because of its short wavelength and high energy, BL can easily reach the retina and induce the generation of reactive oxygen species (ROS), causing photochemical retinal toxicity and related eye diseases. In this study, we investigated the effects of BL irradiation intensity and exposure time on retinal damage in vivo. Nine-week-old male ICR mice were selected for the experiment, and the effects of short-term high-intensity BL and long-term low-intensity BL on the retina were investigated. Hematoxylin and eosin staining was used to analyze the pathological changes in retinal histology; immunohistochemistry was used to analyze the expression of rhodopsin, 8-hydroxydeoxyguanosine (8-OHdG), interleukin-1β (IL-1β), cleaved caspase-3, and glial fibrillary acidic protein (GFAP) in the retina; and an electroretinogram (ERG) was used to evaluate the function of photoreceptor cells. The results showed that the outer nuclear layer (ONL), inner segment/outer segment (IS/OS), and inner nuclear layer of experimental mice irradiated for 6 h/day with BL LED (465 ± 10 nm, 5000 lux) for 5 consecutive days showed no significant difference compared to those of mice in the unirradiated group (p < 0.05). Fundus photography and fluorescein angiography showed no vascular leakage, vascular hyperplasia, or macular degeneration. We further simulated daily environment BL illumination by exposing ICR mice to 6 h/day of 108 lux (44.8 µW/cm2) long-term low-intensity BL LED irradiation for 4–28 weeks. The results showed that ONL nuclei decreased by 30% in wk4 irradiation. The average ONL thickness significantly decreased in wk8 irradiation, accompanied by a decrease in rhodopsin expression and an increase 8-OHdG expression. This indicates that after 4–8-week low-light BL exposure, the photoreceptor cells of the retina begin to show damage effects due to BL-induced oxidative stress. The thickness of the IS/OS layer began to decrease by wk12 irradiation, and the levels of the oxidative stress marker 8-OHdG significantly increased by approximately 2.5 times as compared with the unirradiated group. The above biochemical parameters all showed a gradual increase with BL exposure time, and the most significant damage effect was observed at wk20 and wk28 of continuous BL irradiation. However, the expression of the pro-inflammatory cytokine IL-1β was not significantly different at each time point compared to that in the unirradiated group (p > 0.05). The increased expression of cleaved caspase-3 and GFAP indicated the apoptosis of photoreceptors and Müller cell activation. In summary, compared to short-term high-intensity BL irradiation, continuous exposure to low-intensity BL is more likely to be a risk factor for retinal damage. This study attempts to establish a BL animal experimental platform by simulating the low-illumination BL irradiation conditions of the daily environment, with the aim of serving as a scientific reference for the development of anti-BL eye-protecting health foods in the future.
Bringmann, A., & Wiedemann, P. (2021). Basic structure of the retina. The Fovea: Structure, Function, Development, and Tractional Disorders. Cambridge, USA: Academic Press.
European Committee for Standardization. (2020). European Standard - EN 12464-1: Light and lighting - Lighting of work places - Part 1: Indoor work places. Vol. 1. European Committee for Standardization
Kolb, H. (2007). Roles of amacrine cells. Webvision: The organization of the retina and visual system [Internet]. Salt Lake City, USA: University of Utah Health Sciences Center.
Kolb, H. (2011). Simple anatomy of the retina. Webvision: The organization of the retina and visual system [Internet]. Salt Lake City, USA: University of Utah Health Sciences Center.
Maggs, D., Miller, P., & Ofri, R. (2017). Retina. Slatter's Fundamentals of Veterinary Ophthalmology E-Book. Elsevier Health Sciences.
Remington, L. A., & Goodwin, D. (2021). Clinical anatomy of the visual system E-Book. St. Louis, USA: Elsevier Health Sciences.
Beatty, S., Koh, H. H., Phil, M., Henson, D., & Boulton, M. (2000). The role of oxidative stress in the pathogenesis of age-related macular degeneration. Survey of ophthalmology, 45(2), 115-134.
Benedetto, M. M., Guido, M. E., & Contin, M. A. (2017). Non-visual photopigments effects of constant light-emitting diode light exposure on the inner retina of Wistar rats. Frontiers in neurology, 8, 417.
Behar-Cohen, F., Martinsons, C., Viénot, F., Zissis, G., Barlier-Salsi, A., Cesarini, J. P., Enouf, O., Garcia, M., Picaud, S., & Attia, D. (2011). Light-emitting diodes (LED)for domestic lighting: any risks for the eye? Progress in retinal and eye research, 30(4), 239-257.
Bullough, J. D., & Peana, S. (2020). Investigating Blue‐Light Exposure from: Lighting and Displays. Information Display, 36(1), 17-20.
Chai, K., Kitamura, K., McCann, A., & Wu, X. R. (2010). The Epithelium—Molecular Landscaping for an Interactive Barrier. Journal of Biomedicine and Biotechnology, 2010
Chang, M. L., Wu, C. H., Jiang‐Shieh, Y. F., Shieh, J. Y., & Wen, C. Y. (2007). Reactive changes of retinal astrocytes and Müller glial cells in kainate‐induced neuroexcitotoxicity. Journal of anatomy, 210(1), 54-65.
Chang, S. W., Kim, H. I., Kim, G. H., Park, S. J., & Kim, I. B. (2016). Increased expression of osteopontin in retinal degeneration induced by blue light-emitting diode exposure in mice. Frontiers in Molecular Neuroscience, 9, 58.
Chen, W. J., Wu, C., Xu, Z., Kuse, Y., Hara, H., & Duh, E. J. (2017). Nrf2 protects photoreceptor cells from photo-oxidative stress induced by blue light. Experimental eye research, 154, 151-158.
Chen, Y., Okano, K., Maeda, T., Chauhan, V., Golczak, M., Maeda, A., & Palczewski, K. (2012). Mechanism of all-trans-retinal toxicity with implications for stargardt disease and age-related macular degeneration. Journal of Biological Chemistry, 287(7), 5059-5069.
Cheng, K. C., Hsu, Y. T., Liu, W., Huang, H. L., Chen, L. Y., He, C. X., Sheu, S. J., Chen, K. J., Lee, P. Y., Lin, Y. H., & Chiu, C. C. (2021). The Role of Oxidative Stress and Autophagy in Blue-Light-Induced Damage to the Retinal Pigment Epithelium in Zebrafish In Vitro and In Vivo. International Journal of Molecular Sciences, 22(3), 1338.
Coats, J. G., Maktabi, B., Abou‐Dahech, M. S., & Baki, G. (2021). Blue Light Protection, Part I—Effects of blue light on the skin. Journal of cosmetic dermatology, 20(3), 714-717.
Contín, M. A., Arietti, M. M., Benedetto, M. M., Bussi, C., & Guido, M. E. (2013). Photoreceptor damage induced by low-intensity light: model of retinal degeneration in mammals. Molecular vision, 19, 1614.
Coyle, J. T., & Puttfarcken, P. (1993). Oxidative stress, glutamate, and neurodegenerative disorders. Science, 262(5134), 689-695.
Datta, S., Cano, M., Ebrahimi, K., Wang, L., & Handa, J. T. (2017). The impact of oxidative stress and inflammation on RPE degeneration in non-neovascular AMD. Progress in retinal and eye research, 60, 201-218.
Desai, T. D., Wen, Y. T., Daddam, J. R., Cheng, F., Chen, C. C., Pan, C. L., Lin, K. L., & Tsai, R. K. (2022). Long term therapeutic effects of icariin‐loaded PLGA microspheres in an experimental model of optic nerve ischemia via modulation of CEBP‐β/G‐CSF/non‐canonical NF‐kB axis. Bioengineering & Translational Medicine, e10289.
Eaton, G. J., Johnson, F. N., Custer, R. P., & Crane, A. R. (1980). The Icr: Ha (ICR) mouse: a current account of breeding, mutations, diseases and mortality. Laboratory animals, 14(1), 17-24.
Euler, T., Haverkamp, S., Schubert, T., & Baden, T. (2014). Retinal bipolar cells: elementary building blocks of vision. Nature Reviews Neuroscience, 15(8), 507-519.
Feng, J. H., Dong, X. W., Shen, W., Lv, X. Y., Wang, R., Chen, X. X., Xiong, F.,Hu, X. L., & Wang, H. (2021). Cynaroside protects the blue light-induced retinal degeneration through alleviating apoptosis and inducing autophagy in vitro and in vivo. Phytomedicine, 153604.
Godley, B. F., Shamsi, F. A., Liang, F. Q., Jarrett, S. G., Davies, S., & Boulton, M. (2005). Blue light induces mitochondrial DNA damage and free radical production in epithelial cells. Journal of Biological Chemistry, 280(22), 21061-21066.
Gu, L., Kwong, J. M., Caprioli, J., & Piri, N. (2022). DNA and RNA oxidative damage in the retina is associated with ganglion cell mitochondria. Scientific Reports, 12(1), 1-11.
Guo, K. X., Huang, C., Wang, W., Zhang, P., Li, Y., Liu, Z. Y., & Wang, M. S. (2020). Oxidative stress and mitochondrial dysfunction of retinal ganglion cells injury exposures in long-term blue light. International Journal of Ophthalmology, 13(12), 1854.
Ham, W. T., Mueller, H. A., & Sliney, D. H. (1976). Retinal sensitivity to damage from short wavelength light. Nature, 260(5547), 153-155.
Huxlin, K. R., Dreher, Z., Schulz, M., & Dreher, B. (1995). Glial reactivity in the retina of adult rats. Glia, 15(2), 105-118.
Jaadane, I., Villalpando Rodriguez, G. E., Boulenguez, P., Chahory, S., Carré, S., Savoldelli, M., Jonet, L., Behar-Cohen, F., Martinsons, C., & Torriglia, A. (2017). Effects of white light‐emitting diode (LED)exposure on retinal pigment epithelium in vivo. Journal of cellular and molecular medicine, 21(12), 3453-3466.
Jaadane, I., Boulenguez, P., Chahory, S., Carré, S., Savoldelli, M., Jonet, L., Behar-Cohen, F., Martinsons, C., & Torriglia, A. (2015). Retinal damage induced by commercial light emitting diodes (LEDs). Free Radical Biology and Medicine, 84, 373-384.
Jeong, E., Paik, S. S., Jung, S. W., Chun, M. H., & Kim, I. B. (2011). Morphological and functional evaluation of an animal model for the retinal degeneration induced by N-methyl-N-nitrosourea. Anatomy & cell biology, 44(4), 314-323.
Kakimura, J. I., Kitamura, Y., Taniguchi, T., Shimohama, S., & Gebicke-Haerter, P. J. (2001). Bip/GRP78-induced production of cytokines and uptake of amyloid-β (1-42)peptide in microglia. Biochemical and biophysical research communications, 281(1), 6-10.
Kang, Q., & Yang, C. (2020). Oxidative stress and diabetic retinopathy: Molecular mechanisms, pathogenetic role and therapeutic implications. Redox Biology, 37, 101799.
Kelly, K., Wang, J. J., & Zhang, S. X. (2018). The unfolded protein response signaling and retinal Müller cell metabolism. Neural regeneration research, 13(11), 1861.
Kim, G. H., Kim, H. I., Paik, S. S., Jung, S. W., Kang, S., & Kim, I. B. (2016). Functional and morphological evaluation of blue light-emitting diode-induced retinal degeneration in mice. Graefe's Archive for Clinical and Experimental Ophthalmology, 254(4), 705-716.
Kim, G. H., Paik, S. S., Park, Y. S., Kim, H. G., & Kim, I. B. (2019). Amelioration of mouse retinal degeneration after blue LED Exposure by glycyrrhizic acid-mediated inhibition of inflammation. Frontiers in Cellular Neuroscience, 319.
Kim, J. E., Nam, J. H., Cho, J. Y., Kim, K. S., & Hwang, D. Y. (2017). Annual tendency of research papers used ICR mice as experimental animals in biomedical research fields. Laboratory animal research, 33(2), 171-174.
King, A., Gottlieb, E., Brooks, D. G., Murphy, M. P., & Dunaief, J. L. (2004). Mitochondria‐derived Reactive Oxygen Species Mediate Blue Light‐induced Death of Retinal Pigment Epithelial Cells. Photochemistry and photobiology, 79(5), 470-475.
Krigel, A., Berdugo, M., Picard, E., Levy-Boukris, R., Jaadane, I., Jonet, L., Dernigoghossian, M., Andrieu-Soler, C., Toggiglia, A., & Behar-Cohen, F. (2016). Light-induced retinal damage using different light sources, protocols and rat strains reveals LED phototoxicity. Neuroscience, 339, 296-307.
Kuse, Y., Ogawa, K., Tsuruma, K., Shimazawa, M., & Hara, H. (2014). Damage of photoreceptor-derived cells in culture induced by light emitting diode-derived blue light. Scientific reports, 4(1), 1-12.
Lee, H. S., Cui, L., Li, Y., Choi, J. S., Choi, J. H., Li, Z., Kim, G. E., Choi, W., & Yoon, K. C. (2016). Influence of light emitting diode-derived blue light overexposure on mouse ocular surface. PLoS One, 11(8), e0161041.
Li, H., Zhang, M., Wang, D., Dong, G., Chen, Z., Li, S., Sun, X., Zeng, M., Liao, H., Chen, H., Xiao, S., & Li, X. (2021). Blue Light from Cell Phones Can Cause Chronic Retinal Light Injury: The Evidence from a Clinical Observational Study and a SD Rat Model. BioMed research international, 2021.
Liang, F. Q., & Godley, B. F. (2003). Oxidative stress-induced mitochondrial DNA damage in human retinal pigment epithelial cells: a possible mechanism for RPE aging and age-related macular degeneration. Experimental eye research, 76(4), 397-403.
Lin, C. H., Wu, M. R., Huang, W. J., Chow, D. S. L., Hsiao, G., & Cheng, Y. W. (2019). Low-luminance blue light-enhanced phototoxicity in A2E-laden RPE cell cultures and rats. International journal of molecular sciences, 20(7), 1799.
Lin, C. W., Yang, C. M., & Yang, C. H. (2020). Protective Effect of Astaxanthin on Blue Light Light-Emitting Diode-Induced Retinal Cell Damage via Free Radical Scavenging and Activation of PI3K/Akt/Nrf2 Pathway in 661W Cell Model. Marine Drugs, 18(8), 387.
Lundkvist, A., Reichenbach, A., Betsholtz, C., Carmeliet, P., Wolburg, H., & Pekny, M. (2004). Under stress, the absence of intermediate filaments from Muller cells in the retina has structural and functional consequences. Journal of cell science, 117(16), 3481-3488.
Lujan, B. J., Roorda, A., Croskrey, J. A., Dubis, A. M., Cooper, R. F., Bayabo, J. K., Duncan, J. L., Antony, B. J., & Carroll, J. (2015). Directional optical coherence tomography provides accurate outer nuclear layer and Henle fiber layer measurements. Retina (Philadelphia, Pa.), 35(8), 1511.
Maeda, T., Golczak, M., & Maeda, A. (2012). Retinal Photodamage mediated by all‐trans‐retinal. Photochemistry and photobiology, 88(6), 1309-1319.
Marie, M., Bigot, K., Angebault, C., Barrau, C., Gondouin, P., Pagan, D., Fouquet, S., Villette, T., Sahel, J. A., Lenaers, G., & Picaud, S. (2018). Light action spectrum on oxidative stress and mitochondrial damage in A2E-loaded retinal pigment epithelium cells. Cell death & disease, 9(3), 1-13.
Marie, M., Gondouin, P., Pagan, D., Barrau, C., Villette, T., Sahel, J., & Picaud, S. (2019). Blue-violet light decreases VEGFa production in an in vitro model of AMD. PloS one, 14(10), e0223839.
Markesbery, W. R., & Carney, J. M. (1999). Oxidative alterations in Alzheimer's disease. Brain pathology, 9(1), 133-146.
Nakamura, M., Yako, T., Kuse, Y., Inoue, Y., Nishinaka, A., Nakamura, S., Shimazawa, M., & Hara, H. (2018). Exposure to excessive blue LED light damages retinal pigment epithelium and photoreceptors of pigmented mice. Experimental eye research, 177, 1-11.
Nichani, K., Li, J., Suzuki, M., & Houston, J. P. (2020). Evaluation of Caspase‐3 activity during apoptosis with fluorescence lifetime‐based cytometry measurements and phasor analyses. Cytometry Part A, 97(12), 1265-1275.
Nishimura, Y., Hara, H., Kondo, M., Hong, S., & Matsugi, T. (2017). Oxidative stress in retinal diseases. Oxidative medicine and cellular longevity, 2017.
Noell, W. K., Walker, V. S., Kang, B. S., & Berman, S. (1966). Retinal damage by light in rats. Investigative Ophthalmology & Visual Science, 5(5), 450-473.
Nordberg, J., & Arnér, E. S. (2001). Reactive oxygen species, antioxidants, and the mammalian thioredoxin system. Free radical biology and medicine, 31(11), 1287-1312.
Ouyang, X. I. N. L. I., Yang, J., Hong, Z., Wu, Y., Xie, Y., & Wang, G. (2020). Mechanisms of blue light-induced eye hazard and protective measures: A review. Biomedicine & Pharmacotherapy, 130, 110577.
Pan, C., Banerjee, K., Lehmann, G. L., Almeida, D., Hajjar, K. A., Benedicto, I., ... & Nociari, M. M. (2021). Lipofuscin causes atypical necroptosis through lysosomal membrane permeabilization. Proceedings of the National Academy of Sciences, 118(47), e2100122118.
Patel, A. K., Akinsoji, E., & Hackam, A. S. (2016). Defining the relationships among retinal function, layer thickness and visual behavior during oxidative stress-induced retinal degeneration. Current eye research, 41(7), 977-986.
Park, Y. S., Kim, H. L., Lee, S. H., Zhang, Y., & Kim, I. B. (2021). Expression of the Endoplasmic Reticulum Stress Marker GRP78 in the Normal Retina and Retinal Degeneration Induced by Blue LED Stimuli in Mice. Cells, 10(5), 995.
Phaniendra, A., Jestadi, D. B., & Periyasamy, L. (2015). Free radicals: properties, sources, targets, and their implication in various diseases. Indian journal of clinical biochemistry, 30(1), 11-26.
Qian, Y., Zheng, Y., Weber, D., & Tiffany-Castiglioni, E. (2007). A 78-kDa glucose-regulated protein is involved in the decrease of interleukin-6 secretion by lead treatment from astrocytes. American Journal of Physiology-Cell Physiology, 293(3), C897-C905.
Reichenbach, A., & Bringmann, A. (2013). New functions of Müller cells. Glia, 61(5), 651-678.
Rowan, S., Jiang, S., Korem, T., Szymanski, J., Chang, M. L., Szelog, J., Cassalman, C., Dasuri, K., McGuire, C., Nagai, R., Du, X. J., Brownlee, M., Rabbani, N., Thornalley, P. J., Baleja, J. D., Deik, A. A., Pierce, K. A., Scott, J. M., Clish, C. B.,
Schalkwijk, C. G., & Miyata, T. (2012). Early-and advanced non-enzymatic glycation in diabetic vascular complications: the search for therapeutics. Amino acids, 42(4), 1193-1204.
Sakami, S., Imanishi, Y., & Palczewski, K. (2019). Müller glia phagocytose dead photoreceptor cells in a mouse model of retinal degenerative disease. The FASEB Journal, 33(3), 3680-3692.
Semba, R. D., Nicklett, E. J., & Ferrucci, L. (2010). Does accumulation of advanced glycation end products contribute to the aging phenotype?. Journals of Gerontology Series A: Biomedical Sciences and Medical Sciences, 65(9), 963-975.
Shadforth, A. M. A., Chirila, T. V., Harkin, D. G., Kwan, A. S. L., & Chen, F. K. (2016). Biomaterial templates for the culture and transplantation of retinal pigment epithelial cells: a critical review. Biomaterials and regenerative medicine in ophthalmology, 263-289.
Shang, Y. M., Wang, G. S., Sliney, D. H., Yang, C. H., & Lee, L. L. (2017). Light-emitting-diode induced retinal damage and its wavelength dependency in vivo. International journal of ophthalmology, 10(2), 191.
Shang, Y. M., Wang, G. S., Sliney, D., Yang, C. H., & Lee, L. L. (2014). White light–emitting diodes (LEDs)at domestic lighting levels and retinal injury in a rat model. Environmental health perspectives, 122(3), 269-276.
Sliney, D. H. (2001). Photoprotection of the eye–UV radiation and sunglasses. Journal of Photochemistry and Photobiology B: Biology, 64(2-3), 166-175.
Steiner, M., del Mar Esteban-Ortega, M., & Muñoz-Fernández, S. (2019). Choroidal and retinal thickness in systemic autoimmune and inflammatory diseases: a review. Survey of ophthalmology, 64(6), 757-769.
Tao, J. X., Zhou, W. C., & Zhu, X. G. (2019). Mitochondria as potential targets and initiators of the blue light hazard to the retina. Oxidative medicine and cellular longevity, 2019.
Tisi, A., Parete, G., Flati, V., & Maccarone, R. (2020). Up-regulation of pro-angiogenic pathways and induction of neovascularization by an acute retinal light damage. Scientific reports, 10(1), 1-14.
Toda, M., Asou, H., Miura, M., Toya, S., & Uyemura, K. (1994). GFAP transfected cells produce laminin, leading to neurite outgrowth promotion. Neuroreport, 5(15), 1969-1972.
Valavanidis, A., Vlachogianni, T., & Fiotakis, C. (2009). 8-hydroxy-2′-deoxyguanosine (8-OHdG): a critical biomarker of oxidative stress and carcinogenesis. Journal of environmental science and health Part C, 27(2), 120-139.
Van Norren, D., & Vos, J. J. (2016). Light damage to the retina: an historical approach. Eye, 30(2), 169-172.
Wang, Y., Zhang, M., Sun, Y., Wang, X., Song, Z., Li, H., Liu, K., & Li, Z. (2020). Role of short-wavelength blue light in the formation of cataracts and the expression of Caspase-1, Caspase-11, Gasdermin D in rat lens epithelial cells: insights into a novel pathogenic mmechanism of cataracts. BMC ophthalmology, 20(1), 1-11.
Willoughby, C. E., Ponzin, D., Ferrari, S., Lobo, A., Landau, K., & Omidi, Y. (2010). Anatomy and physiology of the human eye: effects of mucopolysaccharidoses disease on structure and function–a review. Clinical & Experimental Ophthalmology, 38, 2-11.
Wu, J., Seregard, S., & Algvere, P. V. (2006). Photochemical damage of the retina. Survey of ophthalmology, 51(5), 461-481.
Xie, C., Zhu, H., Chen, S., Wen, Y., Jin, L., Zhang, L., Tong, J., & Shen, Y. (2020). Chronic retinal injury induced by white LED light with different correlated color temperatures as determined by microarray analyses of genome-wide expression patterns in mice. Journal of Photochemistry and Photobiology B: Biology, 210, 111977.
Xu, X., Li, Z., Luo, D., Huang, Y., Zhu, J., Wang, X., Hu, H., & Patrick, C. (2003). Exogenous advanced glycosylation end products induce diabetes-like vascular dysfunction in normal rats: a factor in diabetic retinopathy. Graefe's archive for clinical and experimental ophthalmology, 241(1), 56-62.
Yang, J., Li, D., Zhang, Y., Zhang, L., Liao, Z., Aihemaitijiang, S., Hou, Y., Zhan, Z., Xie, K., & Zhang, Z. (2020). Lutein protected the retina from light induced retinal damage by inhibiting increasing oxidative stress and inflammation. Journal of Functional Foods, 73, 104107.
Yoshimura, M., Kitazawa, M., Maeda, Y., Mimura, M., Tsubota, K., & Kishimoto, T. (2017). Smartphone viewing distance and sleep: an experimental study utilizing motion capture technology. Nature and science of sleep, 9, 59.
Zhang, T., Zhang, N., Baehr, W., & Fu, Y. (2011). Cone opsin determines the time course of cone photoreceptor degeneration in Leber congenital amaurosis. Proceedings of the National Academy of Sciences, 108(21), 8879-8884.
Zhou, M., Liu, Y., & Ma, C. (2021). Distinct nuclear architecture of photoreceptors and light-induced behaviors in different strains of mice. Translational Vision Science & Technology, 10(2), 37-37.
Drugs.com. (2021). Mydriatics. Retrieved from https://www.drugs.com/drug-class/mydriatics.html. (Accessed Oct 11, 2021)
eMarketer. (2021). US Time Spent with Mobile 2021. eMarketer. Retrieved from https://www.emarketer.com/content/us-time-spent-with-mobile-2021. (Accessed Sep 24, 2021)
Kinderkrebsinfo. (2016). Anatomy and function of the eye. Retrieved from https://www.kinderkrebsinfo.de/diseases/solid_tumours/pohretino_patinfo120120611/the_eye/index_eng.html. (Accessed Jul 29, 2021)
Optimax. (2020). All about the structure of the human eye. Retrieved from https://www.optimax.co.uk/blog/structure-human-eye/. (Accessed Jul 26, 2021)
Statista. (2021). Average time spent daily on a smartphone in the United States 2021. Statista. Retrieved from https://www.statista.com/statistics/1224510/time-spent-per-day-on-smartphone-us/. (Accessed Sep 22, 2021)
Teaching Students with Visual Impairments. (2022). Structure & Function of the Eye. Retrieved from https://www.teachingvisuallyimpaired.com/structure--function-of-the-eye.html. (Accessed Jun 18, 2022)