簡易檢索 / 詳目顯示

研究生: 林榮君
Rung-Jiun Lin
論文名稱: 穿隧掃描顯微鏡與場離子顯微鏡研究 納米結構的自組裝機制與控制方法
STM and FIM study of the nanostructures of self-assembly mechanism with control method
指導教授: 傅祖怡
Fu, Tsu-Yi
林登松
Lin, Deng-Sung
學位類別: 博士
Doctor
系所名稱: 物理學系
Department of Physics
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 137
中文關鍵詞: 掃描穿隧顯微鏡場離子顯微鏡自組裝行為四苯基鈷卟啉單原子針失蹤原子列
英文關鍵詞: Scanning tunneling microscope, Field ion microscope, Self-assembly, Tetra-phenyl cobalt porphyrin, Single atom tip, Missing-row
論文種類: 學術論文
相關次數: 點閱:270下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 自組裝是透過物件自身的交互作用力組合成元件的機制,並且自組裝結構是一種最低能量也最穩定的結果。當機械或電子設備的漸漸小型化而使得製造也將越來越費工耗時,因此物件的自組裝是一種經濟而有效的方式。
    在這篇論文中,介紹了三個關於自組裝的研究。第一部分是以穿隧掃描顯微鏡(STM)研究Co-TPP分子自組裝在不同鍍量(1 ~ 1.3 ML)的矽(111)表面。我們發現透過調整鉛的鋪附量可以改變分子的自組裝結構:第一種自組裝結構是分子會以三種不同的結構(鞍型,平面型的和異平面型)表現形成各自的結構域在 √7 × √3的Pb/Si (111)基底結構上。這結構中我們還可以發現平面型和異平面型的Co-TPP分子形貌會隨溫度相變。第二種自組裝結構是鞍型與平面型的Co-TPP分子會形成交錯排列成有週期性且更為緊密的結構在「線條狀不相稱相(SIC)」的Pb/Si(111)基底結構上。這樣的轉換機制來自於Co-TPP的鈷原子和Pb/Si(111)襯底的相互作用。
    表面的皺化與失蹤原子列的產生,都是為了得到最低的表面自由能而去改變表面的形貌。所以第二部分是研究鉬單原子針的自組裝。我們利用場離子顯微鏡觀察純鉬針與鈀,鉑,銠,銥鋪附鉬針經退火後的皺化結果。金字塔形單原子針已於形成鈀,鉑,銠鉬覆鉬針。會有兩種類型的金字塔結構形成,分別為1、3、10或1、6、15的結構。然而,純鉬和銥附鉬針因為表面能異向性差異不足以及銥容易退吸附及與鉬合金而無法形成單原子針。
    最後我們同樣利用場離子顯微鏡研究鉑1 × 2的失蹤原子列重構在鉑(110)和鉑(331)的表面。對於鉑(110)面, 經退火到450K發現從1 × 1過渡到1 × 2結構是以跳躍或下行的原子運動產生。對於鉑(331)而言類似的轉變發生在加熱至600K,特別的是形成上兩層都為1 × 2結構的鋸齒模型。我們提出一種新的結構模型解釋鉑(331) - (1×2)重構。

    關鍵字:掃描穿隧顯微鏡,場離子顯微鏡,自組裝行為,四苯基鈷卟啉,單原子針,失蹤原子列。

    Self-assembly is to coalescence many tiny elements to form a component by the self-interaction force, meaning that microstructures automatically assemble on the substrate. When the device miniaturization makes the artificial or mechanical manufacture impossible, the component self-assembly is an economical and effective way.
    In this thesis, three parts of investigations are included. The first part is to study how structure of cobalt(II) - tetraphenylporphyrin (Co-TPP) self-assembly on different phases of Pb plated on Si (111) surface by STM. We found the short-ranged domains and periodic islands of self-assembly structure can be adjusted by changing coverage of Pb. For one case, the molecular- layer constitutes with three kinds of domain formed by different types which were saddle, planar and iso-planar on Pb/Si (111) - √7 × √3 phase. The structure included low-temperature phase transition for planar and iso-planar conformation. For another case, periodic structure consists of staggered of saddle and planar conformation strips on SIC phase, and the structure is more closely than the first. Such the transition mechanisms are produced in the interaction of the center metal atom of Co-TPP and Pb/Si (111) substrate.
    The second part is the Mo single-atom-tips (SATs) are self-assembly forming the faceting phenomena. It has been studied for pure Mo and Pd, Pt, Rh and Ir covered Mo tips by FIM. The pyramidal-shape single atom tips were formed on Pd, Pt and Rh covered Mo tips. Two types of pyramidal structure which is stacked by 1, 3, 10 or 1, 6, 15 atoms for the top three layers were found. However, no single atom tips were found for pure Mo tips and Ir covered-tips due to the insufficient surface-free-energy anisotropy and easy to alloy with Mo.
    The finally part investigated an atomic structure of a 1 × 2 reconstruction of Pt (110) and Pt (331) crystallographic planes by FIM. For the Pt (110) a transition from a 1 × 1 phase into the 1 × 2 missing-row structure is observed upon annealing treatment at 450 K which is interpreted in terms of jumping or descending atom motions. For the Pt (331) similar transition takes place upon heating at 600 K, and the atomic arrangement in two top 1 × 2 layers is compatible with so called saw-tooth model. We propose a new structural model for the Pt (331) - (1 × 2) reconstruction.

    Keywords: Scanning tunneling microscope, Field ion microscope, Self-assembly, Tetra-phenyl cobalt porphyrin, Single atom tip, Missing-row

    Chapter One : Introduction ---- 1 References ---- 9 Chapter Two : Experimental Techniques and Methods ---- 11 2.1 Instrumentation ---- 11 2.2 Experimental procedure ---- 24 Reference ---- 27 Chapter Three : Study of self- assembled of Co-TPP on Pb/Si (111) surface by STM ---- 28 3.1 Introduction ---- 28 3.2 Disorder result of Co-TPP adsorbed on Si (111) ---- 44 3.3 Geometry transition of Co-TPP on Pb/Si (111) - √7 × √3 (or HIC) depend temperature ---- 48 3.4 Morphology conversion of Co-TPP adsorbed on Pb/Si (111) – SIC phase ---- 83 3.5 Summary ---- 98 References ---- 101 Chapter Four : Fabrication of Mo pyramidal-shape single atom tips covered by a noble metal ---- 105 4.1 Introduction ---- 105 4.2 The pure Mo system ---- 108 4.3 Pd-induced faceting ---- 111 4.4 Mo(111) pyramidal tip covered with Pt, Rh, and Ir ---- 113 4.5 Summary ---- 117 References ---- 118 Chapter Five : Field ion microscopy study of 1 × 2 reconstruction on Pt surfaces ---- 120 5.1 Interdiction ---- 120 5.2 Saw-tooth structure reconstruction ---- 123 5.3 Ascending motion ---- 127 5.4 Stability ---- 131 5.5 Summary ---- 132 References ---- 134 Chapter six : Conclusions ---- 135

    Chapter One
    [1]W. Auwärter, K. Seufert, F. Klappenberger, J. Reichert, A. W. Bargioni, A. Verdini, D. Cvetko, M. D. Angela, L. Floreano, A. Cossaro, G. Bavdek, A. Morgante, A. P. Seitsonen, and J. V. Barth, Phys. Rev. B 81 (2010) 245403.
    [2]K. Comanici, F Buchner, K Flechtner, T Lukasczyk, J.M. Gottfried, H. Steinrueck and H. Marbach, Langmuir 24 (2008) 1897–901.
    [3]L. Scudiero, D. E. Barlow and K.W. Hipps, J. Phys. Chem. B. 104 (2000) 11899–905.
    [4]A. Szczepkowicz, A. Ciszewski, R. Bryl, C. Oleksy, C.H. Nien, Q. Wu, T. E. Madey, Sur. Sci. 599 (2005) 55.
    [5]H.S. Kuo, I.S. Hwang, T.Y. Fu, Y.C. Lin, C.C. Chang, T.T. Tsong, Jpn. J. Appl. Phys. 45 (2006) 8972-8983.
    [6]T.Y. Fu, L.C. Cheng, C.H. Nien, T.T. Tsong, Phys. Rev. B. 64 (2001) 113401.
    [7]I. Ermanoski, K. Pelhos, W. Chen, J.S. Quinton, T.E. Madey, Sur. Sci. 549 (2004) 1-23.
    [8]K.M. Ho, K.P. Bohnen, Phys. Rev. Lett. 59 (1987) 1833.
    [9]K.M. Ho, K.P. Bohnen, Europhys. Lett. 4 (1987) 345.
    [10]Marcel den Nijs, Phys. Rev. Lett. 66 (1991) 907.
    [11]M. Sturmat, R. Koch, K.H. Rieder, Phys. Rev. Lett. 77 (1996) 5071.
    [12]C. Hbfher, J.W. Rabalais, Phys. Rev. B. 58 (1998) 9990.
    [13]J.C. Campuzano, M.S. Foster, G. Jennings, R.F. Willis, W.N. Unerti, Phys. Rev. Lett. 54 (1985) 2684.
    [14]J.C. Campuzano, A.M. Lahee, G. Jennings, Surf. Sci. 152–153 (1978) 265.

    Chapter Two
    [1]G. Binnig, H. Rohrer (1986). "Scanning tunneling microscopy". IBM Journal of Research and Development 30: 4.
    [2]Richard L. Liboff, Introductory Quantum Mechanics (Addison Wesley, New York, 1980).
    [3]C. Julian Chen, Introduction to Scanning Tunneling Microscopy (Oxford University Press, New York, 1993).
    [4]E. W. Müller, Z. Physik, 131 (1951) 136.
    [5]E. W. Müller, Z. Physik, 106 (1937) 541.
    [6]J.R. Oppenheimer, Phys. Rev. 32 (1928) 361.
    [7]E.W. Müller, J. Appl. Phys. 27(5) (1956) 474–476.
    [8]E.W. Müller, Phys. Rev. 102(3) (1956) 618–624.
    [9]E.W. Müller, T.T. Tsong, Field Ion Microscopy, Principles and Applications (Elsevier, New York, NY, 1969)
    [10]T.T. Tsong, Atom-Probe Field Ion Microscopy: Field Emission, Surfaces.
    [11]R. Gomer, Field Emission and Field Ionisation (Havard University, Cambridge, 1961) References 27.
    [12]D.G. Brandon, Philos. Mag. 7(78) (1962) 1003–1011.
    [13]D.G. Brandon, Br. J. Appl. Phys. 14(8) (1963) 474.
    [14]E.W. Müller, Acta Crystallogr. 10(12) (1957) 823–823.
    [15]E.W. Müller, Science 149(3684) (1965) 591–601
    [16]T.T. Tsong, Surf. Sci. 70 (1978) 211

    Chapter Three
    [1]V. Iancu, A. Deshpande, and S.W. Hla, Nano Letter, 6 (2006) 820.
    [2]A. Weber-Bargioni, W. Auwärter, F. Klappenberger, J. Reichert, S. Lefrancois, T. Strunskus, C. Wöll, A. Schiffrin, Y. Pennec, and J. V. Barth, Chemphyschem, 9 (2008) 89.
    [3]J. Brede, M. Linares, S. Kuck, J. Schwöbel, A. Scarfato, S.-H. Chang, G. Hoffmann, R. Wiesendanger, R. Lensen, P.H J Kouwer, J. Hoogboom, A. E Rowan, M. Bröring, M. Funk, S. Stafström, F. Zerbetto, and R. Lazzaroni, Nanotechnology, 20 (2009) 275602.
    [4]T.A. Jung, R. R. Schlittler and J. K. Gimzewski, Nature, 386 (1997) 696.
    [5]W. Auwärter, A. Weber-Bargioni, S. Brink, A. Riemann, A. Schiffrin, M. Ruben and J. V. Barth, ChemPhysChem, 8 (2007) 250–254.
    [6]X. H. Qiu, G. V. Nazin and W. Ho, Phys. Rev. Lett. 93 (2004) 196806.
    [7]V. Iancu, A. Deshpande and S.W. Hla, Phys. Rev. Lett. 97 (2006) 266603.
    [8]M. Hupalo, J. Schmalian and M. C. Tringides, Phys. Rev. Lett. 90 (2003) 216106.
    [9]M. Hupalo, J. Schmalian and M. C. Tringides, Phys. Rev. B, 66 (2002) 161410.
    [10]C.H. Hsu, F.C. Chuang, M.A. Albao and V. Yeh, Phys. Rev. B, 81 (2010) 033407.
    [11]IS. Hwang, R.E. Martinez, C. Liu and J.A. Golovchenko, Phys. Rev. B, 51 (1995) 10193.
    [12]I.S. Hwang, R.E. Martinez, C. Liu and J.A. Golovchenko, Surf. Sci. 323 (1995) 241-257.
    [13]A. Takai, C.P. Gros, J.M. Barbe, R. Guilard and S. Fukuzumi, Chem. Eur. J. 15 (2009) 3110.
    [14]V. Sgobba, G. Giancane, S. Conoci, S. Casilli, G. Ricciardi, D.M. Guldi, M. Prato and L. Valli, J. Am. Chem. Soc. 129 (2007) 3148.
    [15]M. Calvete, G.Y. Yang and M. Hanack, Synth. Met. 141 (2004) 231.
    [16]P. van Beurden, E. van Veenendaal, W. J. P. van Enckevort and H. J. F. Knops, Surf. Sci. 424 (1999) 109 - 116.
    [17]K. Takayanagi, Y. Tanishiro, M. Takahashi and S. Takahashi, J. Vac. Sci. Technol. A, 3 (1985) 1502.
    [18]K. Takayanagi, Y. Tanishiro, S. Takahashi and M. Takahashi, Surf. Sci. 164 (1985) 367.
    [19]F. Grey, R. Feidenhans, M. Nielsen and R.L. Johnson, J. Phys. Colloq. 50 (1989) C7-181-187.
    [20]L. Seehofer, G. Falkenberg, D. Daboul and R. L. Johnson, Phys. Rev. B, 51 (1995) 13503-13514.
    [21]D. Tang, H. E. Elsayed-Ali, J. Wendelken and J. Xu, Phys. Rev. B, 52 (1995) 1481-1484.
    [22]E. Ganz, F. Xiong, I. S. Hwang and J. Golovchenko, Phys. Rev. B, 43 (1991) 7316-7319.
    [23]E. Ganz, I.S. Hwang, F. Xiong, S.K. Theiss and J.A. Golovchenko, Surf. Sci. 257 (1991) 259-273.
    [24]D. Nakamura, J. Yuhara and K. Morita, Surf. Sci. 425 (1999) 174-179.
    [25]F. Xiong, E. Ganz, J.A. Golovchenko and F. Spaepen, Nucl. Instrum. Methods Phys. Res., Sect. B. 56/57 (1991) 780-784.
    [26]J. Slezák, P. Mutombo and V. Cháb, Phys. Rev. B. 60 (1999) 13328.
    [27]O. Custance, J.M. Gόmez-Rodriguez, A.M. Barό, L. Jure, P. Mallet and J.Y. Veuillen, Surf. Sci. 482 - 4855 (2001) 1399-1405.
    [28]I.S. Hwang, S.H. Chang, C.K. Fang, L.J. Chen and T.T. Tsong, Phys. Rev. Lett. 93 (2004) 106101.
    [29]L. Seehofer, G. Falkenberg, D. Daboul and R. L. Johnson, Phys. Rev. B. 51 (1995) 13503.
    [30]S. Stepanovsky, M. Yakes, V. Yeh, M. Hupalo and M.C. Tringides, Surf. Sci. 600 (2006) 1417–1430.
    [31]M. Hupalo, T.L. Chan, C.Z. Wang, K.M. Ho and M.C. Tringides, Phys. Rev. B. 66 (2002) 161410.
    [32]M. Hupalo, J. Schmalian and M. C. Tringides, Phys. Rev. Lett. 90 (2003) 206106.
    [33]L. Scudiero, D. E. Barlow, K. W. Hipps and J. Phys. Chem. B 104 (2000) 11899.
    [34]Z.Y. Yang, C. Durkan, Surf. Sci. 604 (2010) 660-665.
    [35]W. Auwärter, K. Seufert, F. Klappenberger, J. Reichert, A. Weber-Bargioni, A. Verdini, D. Cvetko, M. Dell’Angela, L. Floreano, A. Cossaro, G. Bavdek, A. Morgante, A.P. Seitsonen and J.V. Barth, Phys. Rev. B, 81 (2010) 245403.
    [36]S. Ditze, M. Röckert, F. Buchner, E. Zillner, M. Stark, H.P. Steinrück and H. Marbach, Nanotechnology, 24, 115305 (2013).
    [37]F. Buchner, E. Zillner, M. Röckert, S. Gläßel, H.P. Steinrück and H. Marbach, Chem. Eur. J. 17 (2011) 10226 – 10229.
    [38]Y. Bai, F. Buchner, I. Kellner, M. Schmid, F. Vollnhals, H.P. Steinrück, H. Marbach and J.M. Gottfried, New J. Phys. 11 (2009) 125004.
    [39]F. Buchner, V. Schwald, K. Comanici, H.P. Steinrück and H. Marbach, ChemPhysChem, 8 (2007) 241-243.
    [40]K. Comanici, F. Buchner, K. Flechtner, T. Lukasczyk, J. M. Gottfried, H.P. Steinrück and H. Marbach, Langmuir, 24 (2008) 1897-1901.
    [41]A. Weber-Bargioni, J. Reichert, A. P. Seitsonen, W. Auwärter, A. Schiffrin and J. V. Barth, J. Phys. Chem. C 112 (2008) 3453.
    [42]F. Buchner, I. Kellner, W. Hieringer, A. Görling, H.P. Steinrück and H. Marbach, Phys. Chem. Chem. Phys. 12 (2010) 13082–13090.
    [43]L. Scudiero, D. E. Barlow, U. Mazur, K. W. Hipps, J. Am. Chem. Soc. 123 (2001) 4073.
    [44]F. Buchner, K. Flechtner, Y. Bai, E. Zillner, I. Kellner, H.P. Steinrück, H. Marbach and J. M. Gottfried, J. Phys. Chem. C 112 (2008) 15458.
    [45]F. Buchner, K.G. Warnick, T. Wölfle, A. Görling H.P. Steinrück, W. Hieringer and H. Marbach, J. Phys. Chem. C, 113 (2009) 16450–16457.
    [46]W. Deng and K. W. Hipps, J. Phys. Chem. B, 107 (2003) 10736-10740.
    [47]M.O. Sinnokrot and C.D. Sherrill, J. Phys. Chem. A, 110 (2006) 10656-10668.
    [48]S. Tsuzuki, K. Honda, T. Uchimaru, M. Mikami and K. Tanabe, J. Am. Chem. Soc. 124 (2002) 104.
    [49]O. Bludský, M. Rubeš, P. Soldán and P. Nachtigall, J. Chem. Phys. 128 (2008) 114102.
    [50]E. G. Cox, D. W. J. Cruickshank and J. A. S. Smith, proc. R. Soc. London, Ser. A, 247 (1958) 1-21.
    [51]J. Brede, M. Linares, R. Lensen, A. E. Rowan, M. Funk, M, Bröring, G. Hoffmann and R. Wiesendanger, J. Vac. Sci. Technol. B, 27(2) (2009) 799.
    [52]J.P. Beggan, S.A. Krasnikov, N.N. Sergeeva, M.O. Senge and A.A. Cafolla, Nanotechnology 23 (2012) 235606.
    [53]A. D. Backe, J. Chem. Phys. 98 (1993) 5648.
    [54]T. Yokoyama, T. Kamikado and S. Mashiko, J. Chem. Phys. 115 (2001) 3814.
    [55]S. Müllegger, W. Schöfberger, M. Rashidi, L.M. Reith and R. Koch, J. Am. Chem. Soc. 131 (2009) 17740

    Chapter Four
    [1]H.W. Fink, Physica Scripta. 38 (1988) 260-263.
    [2]H.S. Kuo, I.S. Hwang, T.Y. Fu, Y.C. Lin, C.C. Chang, T.T. Tsong, Jpn. J. Appl. Phys. 45 (2006) 8972-8983.
    [3]H.S. Kuo, I.S. Hwang, T.Y. Fu, Y.H. Lu, C.Y. Lin, and T.T. Tsong, Appl. Phys. Lett. 92 (2008) 063106.
    [4]C.C. Chang, H.S. Kuo, I.S. Hwang, T.T. Tsong, Nanotechnology. 20 (2009) 115401.
    [5]H.W. Fink, W. Stocker, H. Schmid, Phys. Rev. Lett. 65 (1990) 1204-1206.
    [6]K.J. Song, R.A. Demmin, C. Dong, E. Garfunkel, T.E. Madey, Surf. Sci. Lett. 227 (1990) L79-L85.
    [7]K.J. Song, C.Z. Dong, T.E. Madey, Langmuir. 7 (1991) 3019.
    [8]T.E. Madey, J. Guan, C.H. Nien, C.Z. Dong, H.S. Tao, R.A. Campbell, Surf. Rev. Lett. 3 (1996) 1315-1328.
    [9]T.E. Madey, C.H. Nien, K. Pelhos, J.J. Kolodziej, I.M. Abdelrehim, H.S. Tao, Surf. Sci. 438 (1999) 191-206.
    [10]S.P. Chen, Surf. Sci. Lett. 274 (1992) L619-L626.
    [11]J.G. Che, C.T. Chan, C.H. Kuo, T.C. Leung, Phys. Rev. Lett. 79 (1997) 4230-4233.
    [12]T.Y. Fu, L.C. Cheng, C.H. Nien, T.T. Tsong, Phys. Rev. B. 64 (2001) 113401.
    [13]I. Ermanoski, K. Pelhos, W. Chen, J.S. Quinton, T.E. Madey, Surf. Sci. 549 (2004) 1-23.
    [14]H.S. Kuo, I.S. Hwang, T.Y. Fu, Y.S. Hwang, Y.H. Lu, C.Y. Lin, J.L. Hou, T.T. Tsong, Nanotechnology. 20 (2009) 335701.
    [15]H.S. Kuo, I.S. Hwang, T.Y. Fu, J.Y. Wu, C.C. Chang, T.T. Tsong, Nano. Lett. 4 (2004) 2379-2382.
    [16]J. Guan, R.A. Campbell, T.E. Madey, J. Vac. Sci. Technol. A. 13 (1995) 1484-1488.
    [17]J.G. Che, C.T. Chan, W.E. Jian, T. C. Leung, Phys. Rev. B. 57 (1998) 1875-1880.
    [18]C. Zhang, M.A. Van Hove and G.A. Somorjai, Surf. Sci. 149 (1985) 326-340.
    [19]E. Bauer and H. Poppa, Surf. Sci. 88 (1979) 31-64.
    [20]C.Z. Dong, S.M. Shivaprasad, K.J. Song and T.E. Madey, J. Chem. Phys. 99 (1993) 9172-9181.
    [21]J.M. Zhang, D.D. Wang, K.W. Xu, Appl. Surf. Sci. 252 (2006) 8217-8222.
    [22]C.T. Chan, J.G. Che, T.C. Leung, Surf. Sci. 401 (1998) L432-L436.
    [23]C. Zhang, A.J. Gellman, M.H. Farias, G.A. Somorjai, Mat. Res. Bull. 20 (1985) 1129-1135.
    [24]J.G. Che, K.M. Zhang, X.D. Xie, Surf. Sci. 472 (2001) 179-186.
    [25]G. Antczak, T.E. Madey, M. Błaszczyszyn, R. Błaszczyszyn, Vacuum. 63 (2001) 43-51.
    [26]J. Guan, R.A. Campbell, T.E. Madey, Surf. Sci. 341 (1995) 311-327.
    [27]C. Dong, L. Zhang, U. Diebold, T.E. Madey, Surf. Sci. 322 (1995) 221-229.
    [28]D.B. Dańko, M. Kuchowicz, J. Kolaczkiewicz, Surf. Sci. 552 (2004) 111-122.
    [29]T.Y. Fu, Y. C. Lin, H.S. Kuo, I.S. Hwang, T.T. Tsong, Surf. Sci. 601 (2007) 3992-3995.
    [30]D.A. Hutt, D.W. Bassett, Surf. Sci. 287 (1993) 1000-1003.

    Chapter Five
    [1]D. L. Adams, H. B. Nielsen, M. A. Van Hove, A. Ignatiev, Surf. Sci. 104 (1981) 47.
    [2]K. Heinz, A. Barthel, L. Hammer, K. Müller, Surf. Sci. 191 (1987) 174.
    [3]P. Fery, W. Moritz, D. Wolf, Phys. Rev. B. 38 (1988) 7275.
    [4]P. Fenter, T. Gustafsson, Phys. Rev. B. 38 (1988) 10197.
    [5]G. L. Kellogg, Phys. Rev. Lett. 55 (1985) 2168.
    [6]Q. Gao, T. T. Tsong, Phys. Rev. Lett. 57 (1986) 452.
    [7]T. Gritsch, D. Coulman, R.J. Behm, G. Ertl, Phys. Rev. Lett. 63 (1989) 1086.
    [8]T. Gritsch, D. Coulman, R.J. Behm, G. Ertl, Surf. Sci. 257 (1991) 297.
    [9]S. Speller, J. Kuntze, T. Rauch, J. Bömermann, M. Huck, M. Aschoff, W. Heiland, Surf. Sci. 366 (1996) 251.
    [10]S.J Jenkins, M.A Petersen, D.A King, Surf. Sci. 494 (2001) 159.
    [11]H.P. Bonzel, S. Ferrer, Surf. Sci. 118 (1982) L263.
    [12]M. S. Daw, Surf. Sci. 166 (1986) L161.
    [13]N. Seriani and F. Mittendorfer, J. Phys. Condens. Matter. 20 (2008) 184023.

    下載圖示
    QR CODE