簡易檢索 / 詳目顯示

研究生: 鄭智璟
Cheng, Chih-Ching
論文名稱: 符合CMOS製程之鐵電負電容電晶體及自我對準之鰭式穿隧型電晶體試製
Fabrication of Ferroelectric Negative Capacitance MOSFETs and Self-Aligned Fin-Shaped TFETs Compatible with CMOS Process
指導教授: 李敏鴻
Lee, Min-Hung
學位類別: 碩士
Master
系所名稱: 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 54
中文關鍵詞: 陡峭次臨界擺幅穿隧型電晶體鰭式穿隧型電晶體
英文關鍵詞: steep subthreshold swing, TFET, fin-shaped TFET
論文種類: 學術論文
相關次數: 點閱:150下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在次世代COMS製程結點,改善次臨界擺幅去降低元件之操作電壓及功率損耗極為重要。而在本論文之實驗使用鐵電材料HfOX/ZrOX做為電晶體之閘極介電層(CET=0.98),應用鐵電材料之負電容效應改善先閘極製程之電晶體次臨界擺幅。
    穿隧型電晶體式使用穿隧機制,改善次臨界擺幅,而穿隧型電晶體的製程S/D方面需要clear之光罩(非自對準製程),此種光罩在製作小線寬時最大的困難點在於光罩與光罩對準,另外在元件微縮後,會使得閘極控制力下降,造成多於功率消耗,而在論文實驗中使用鳍式結構,來加強閘極控制力,S/D使用了dark光罩(自對準製程)製作鳍式穿隧型電晶體,全程使用i-line黃光製程成功驗證自對準製程應用於鳍式穿隧型電晶體。

    The enhancement performance of steep swing may reduce power consumption and be a candidate of next generation technology node in CMOS industry.In this work, the superior subthreshold swing is obtained by NC effect with dielectric CET=0.98nm, which the combination of HfOX/ZrOX was used.
    The self-aligned fin-shaped TFET without space between gate and source/drain is demonstrated successfully, and the fabrication process using all i-line photolithograph stepper without e-beam writer. The high ON current (> 10A) is obtained and indicates the benefit of self-alignment process. The proposed fin-shaped TFET process leads the opportunity of the advanced devices fabrication by 6-inch process with i-line photolithograph stepper.

    目錄 Publication………………………………………………………………………I 中文摘要 …………………………………………………………………II Abstract………………………………………………………………………III 致謝…………………………………………………………………………….IV 目錄……………………………………………………………………………V 圖目錄………………………………………………………………………..VII 表目錄………………………………………………………………………..XI 第一章緒論 1-1追求陡峭次臨界擺幅………………………………………………………1 第二章文獻回顧與論文導讀 2-1負電容元件的實作文獻……………………………………………………4 2-2鐵電材料-鉿基氧化物…………………………………………………8 2-3鰭式電晶體的實作文獻…………………………………………………11 第三章 鐵電負電容電晶體 3-1 實驗動機………………………………………………………………14 3-2 先閘極鐵電負電容電晶體……………………………………15 3-2-1先閘極元件製作程…………………………………………………15 3-2-2先閘極元件之HfOX/ZrOX之分析………..………………………17 3-2-3先閘極元件之TEM結構分析……………………………………… 20 3-2-4先閘極元件之量測…………………………………………………21 3-3後閘極鐵電負電容電晶體製作與量測…………………………………23 3-4鐵電負電容電晶體之結論………………………………………………29 第四章 自我對準之鳍式穿隧型電晶體 4-1 實驗動機…………………………………………………………………30 4-2自對準鰭式穿隧型電晶體製作流程與設計 ……………………………31 4-2-1 元件製作流程…………………………..……………………………31 4-2-2元件製作之討論……………………………………………………33  4-2-3 矽基板鳍式平台製作………………………………………………36  4-2-4鳍式穿隧型電晶體之閘極定義及退火……………………………40 4-3 鳍式穿隧型電晶體之量測與分析………………………………………43 4-4鳍式穿隧型電晶體之結論…………………………………………45 第五章結論與未來工作 5-1 綜合討論…………………………………………………………………46 5-2 未來工作…………………………………………………………………48 參考文獻……………………………………………………………………50 附錄 …………………………………………………………………54

    [1] S. Wolf, "Silicon Processing for the VLSI Era*, Vol-2, p.338~p.340, Lattice Press (1990).
    [2] International Technology Roadmap for Semiconductors (ITRS) Roadmap, 2009.
    [3] A. Chen, “Nanoelectronic Device Research for beyond-CMOS Technologies” in “Emerging Technologies for the post 14nm Node Area, ” IEEE IEDM short course, Dec. 8, 2012.
    [4] H.-S. Philip Wang, “Introduction and Overview” in “VLSI Technology Beyond 14 nm Node, ” IEEE IEDM short course, Dec. 4, 2011.
    [5] T. S. Böscke, J. Müller, D. Bräuhaus, U. Schröder, U. Böttger, “Ferroelectricity in Hafnium Oxide:CMOS compatible Ferroelectric Field Effect Transistors, ’’ in IEDM., pp. 547-550, 2011.
    [6] G. A. Salvatore, D. Bouvet, and A. M. Ionescu, “Demonstration of Subthrehold Swing Smaller Than 60mV/decade in Fe-FET with P(VDF-TrFE)/SiO2 Gate Stack, ” in IEDM Tech. Dig., pp. 167-170, 2008.
    [7] A. Rusu, G. A. Salvatore, D. Jimenez, and A. M. Ionescu, ‘‘Metal-Ferroelectric-Metal-Oxide- Semiconductor Field Effect Transistor with Sub-60mV/decade Subthreshold Swing and Internal Voltage Amplification,’’ in IEDM Tech. Dig., pp. 395-398, 2010.
    [8] J. Müller, T. S. Böscke, U. Schröder, S. Mueller, D. Bräuhaus, U. Böttger, L. Frey, and T. Mikolajick, “Ferroelectricity in Simple Binary ZrO2 and HfO2,” Nano Letters, pp. 4318−4323, 2012
    [9] J. Müller, E. Yurchuk, T. Schlosser, J. Paul, R. Hoffmann, S. Muller, D. Martin, S. Slesazeck, P. Polakowski, J. Sundqvist, M. Czernohorsky, K. Seidel, P. Kucher, R. Boschke, M. Trentzsch, K. Gebauer, U. Schroder, and T. Mikolajick, “Ferroelectricity in HfO2 enables nonvolatile data storage in 28 nm HKMG, ” in VLSI Symp. Tech. Dig., p. 25, 2012.
    [10] M. C. Cheng, C. H. Lin, Y. F. Hou, Y. J. Chen, C. Y. Lin, F. K. Hsueh, H. L. Liu, C. T. Liu, B. W. Wang, H. C. Chen, C. C. Chen, S. H. Chen, C. T. Wu, T. Y. Lai, M. Y. Lee, B. W. Wu,C. S. Wu, I Yang, Y. P. Hsieh, C. H. Ho, T. Wang, Angada B. Sachid, Chenming Hu , and F. L. Yang, “A 10nm Si-based Bulk FinFETs 6T SRAM with Multiple Fin Heights Technology for 25% Better Noise Margin ’’ in VLSI Symp. Tech. Dig., T219, 2013.
    [11] A. I. Khan, D. Bhowmik, P. Yu, S. J. Kim, X. Pan, R. Ramesh and S. Salahuddin, “Experimental evidence of ferroelectric negative capacitance in nanoscale heterostructures, ’’ Applied Physics Letters, Vol. 99, 113501, 2011.
    [12] C. W. Yeung, A. I. Khan, A. Sarker, S. Salahuddin, and C. Hu, “Low Power Negative Capacitance FETs for Future Quantum-Well Body Technology, ’’ in VLSI-TSA, pp. 179-180, 2013.
    [13] S.-Y. Wu, “A new ferroelectric memory device, metal-ferroelectric-semiconductor transistor, ’’ Trans. on Electron Devices, vol 21, p. 499, 1974.
    [14] M. H. Lee, J.-C. Lin, Y.-T. Wei, C.-W. Chen, W.-H. Tu, H.-K. Zhuang, and M. Tang, “Ferroelectric Negative Capacitance Hetero-Tunnel Field-Effect-Transistors with Internal Voltage Amplification, ” in IEDM Tech. Dig., pp. 104-107, 2013.
    [15] S. Salahuddin, and S. Datta, ‘‘Can the subthreshold swing in a classical FET be lowered below 60 mV/decade?,’’ in IEDM Tech. Dig., pp. 693-696, 2008.

    [16] M. H. Lee, S. T. Chang, T.-H. Wu, and W.-N. Tseng, “Driving Current Enhancement of Strained Ge (110) p-type Tunnel FETs and Anisotropic Effect, ” IEEE Electron Device Letter, vol. 32, no. 10, pp. 1355-1357, 2011.
    [17] K. Joen, W.Y. Lop, P. Patel, C. Y. Kang, J. Oh, A. Bowonder, C. Park, C. S. Park, C. Smith, P. Majhi, H.-H. Tseng, R. Jammy, T.-J. King Liu, and C. Hu, “Si Tunnel Transistors with A Novel Silicided Source and 46mV/dec Swing, ” in VLSI Symp. Tech. Dig., pp. 121-122, 2010.
    [18] C. Hu, D. Chou, P. Patel, and A. Bowonder, “Green transistor—A VDD scaling path for future low power ICs, ” in Proc. Int. Symp. VLSI-TSA, Apr. 2008, pp. 14–15.
    [19] M. H. Lee, J.-C. Lin, and C.-Y. Kao, “Hetero-Tunnel Field-Effect-Transistors with Epitaxially Grown Germanium on Silicon, ” IEEE Trans. on Electron Device, vol. 60, no.7, pp. 2423-2427, 2013.
    [20] S. J. Choi, J.W .Han, S. Kim, D. I. Moon, M. Jang, and Y. K. Choi, “High - Performance Polycrystalline Silicon TFT on the Structure of a Dopant-Segregated Schottky-Barrier Source/Drain, ” IEEE Ectrin Device Letters, Vol. 31. pp. 228-230, 2010.
    [21] B. Jaffe, W. R. Cook, and H. Jaffe, “Piezoelectric Ceramics, ’’ Academic Press Inc., London. 1970.
    [22] P. Paruch, T. Giamarchi, T. Tybell, and J. M. Triscone, “Nanoscale studies of domain wall motion in epitaxial ferroelectric thin films, ’’ American Physical Society, APS March Meeting, March, pp. 21-25, 2005.
    [23] M. H. Park, H. J. Kim, Y. J. Kim, W. Lee, T. Moon, and C. S. Hwang, “Evolution of phases and ferroelectric properties of thin Hf0.5Zr0.5O2 films according to the thickness and annealing temperature, ” Applied Physics Letters, 102, 242905, 2013.
    [24] C. H. Cheng and A. Chin, “Low- Voltage Steep Turn-On pMOSFET Using Ferroelectric High-k Gate Dielectric, ” IEEE Electrin Device Letters, Vol. 35, pp. 274-276, 2014.
    [25] S. Mueller, J. Mueller, A. Singh, S. Riedel, J. Sundqvist, U. Schroeder, and T. Mikolajick, “Incipient Ferroelectricity in Al-Doped HfO2 Thin Films, ” Adv. Funct. Mater., vol. 22, p. 2412, 2012.
    [26] A. I. Khan, C. W. Yeung, C. Hu, and S. Salahuddin, “Ferroelectric Negative Capacitance MOSFET: Capacitance Tuning & Antiferroelectric Operation, ” in IEDM Tech. Dig., pp. 255-258, 2011.

    無法下載圖示 本全文未授權公開
    QR CODE