簡易檢索 / 詳目顯示

研究生: 張乃勻
Chang, Nai-Yun
論文名稱: 氧電漿表面處理對少層數二硫化鉬表面特性的影響
Influence of oxygen plasma treatments on the surface properties of few layers MoS2 on a silica surface
指導教授: 邱顯智
Chiu, Hsiang-Chih
口試委員: 莊程豪
Chuang, Cheng-Hao
張宜仁
Chang, Yi-Ren
邱顯智
Chiu, Hsiang-Chih
口試日期: 2021/07/09
學位類別: 碩士
Master
系所名稱: 物理學系
Department of Physics
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 56
中文關鍵詞: 二硫化鉬氧電漿表面處理原子力顯微鏡表面吸附力表面摩擦力
英文關鍵詞: Molybdenum Disulfide (MoS2), oxygen plasma, Atomic Force Microscopy, friction, adhesion
研究方法: 實驗設計法
DOI URL: http://doi.org/10.6345/NTNU202300551
論文種類: 學術論文
相關次數: 點閱:203下載:16
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

二硫化鉬由於其優異的光學、電性、以及磨潤性質,在未來的微米或奈米機電系統中,有著極大的應用潛力。在製作奈米元件的過程中,氧電漿表面處理是一種常用的表面處理方法。因此,了解氧電漿表面處理對二硫化鉬表面性質的影響是很重要的。在我們的研究中,我們使用了原子力顯微鏡研究化學氣相沉積法所製備出的少層數二硫化鉬經過不同氧電漿表面處理時間後,其表面形貌、表面摩擦力和表面吸附力隨電漿處理時間的變化。我們並藉由拉曼光譜和X射線光電子能譜來觀察二硫化鉬在經過氧電漿表面處理後,其晶格結構的變化與表面氧化的程度。我們發現原子力顯微鏡的探針與二硫化鉬表面間的表面摩擦力和表面吸附力會先隨著氧電漿表面處理時間增加而增加,原因是因為二硫化鉬表面經過氧電漿表面處理後,會產生硫缺陷,因此可能將環境中的水分吸引到二硫化鉬的表面上,使得針尖與樣品表面間形成奈米級水橋,導致表面吸附力量值增加。然而,在經過較長的氧電漿表面處理後,我們所量測到的二硫化鉬表面摩擦力和表面吸附力突然降低。這歸因於二硫化鉬表面上開始形成三氧化鉬,並且會出現多個明顯的裂縫和奈米捲,導致二硫化鉬表面變的十分粗糙。這種粗糙的表面將導致針尖與樣品表面間的有效接觸面積減小,因此造成我們量測到的表面摩擦力和表面吸附力較小。藉由我們的實驗結果可以知道,在元件製造過程中使用的氧電漿表面處理技術,在不同氧電漿處理的時間下,二硫化鉬的表面形貌及奈米磨潤特性都會發生變化。我們的實驗結果將可能應用在製做微奈米機電系統的過程中。

Molybdenum disulfide (MoS2) has attracted broad attentions in the science community due to its excellent optical, electrical, nanotribological properties They have applications in surface protective or lubricative coatings for miniature moving components in future nano-electro-mechanical system (NEMS). For the fabrication of nano-devices, the oxygen plasma treatment is a commonly used surface processing method. Therefore, it is important to understand the how the oxygen plasma treatment may influence the surface properties of MoS2. In this work, we used atomic force microscopy (AFM) to study the morphological, frictional, and adhesive properties of CVD grown few-layer MoS2 with various oxygen plasma treating times. The variation of lattice structure and degree of surface oxidation in MoS2 were respectively examined by Raman spectroscopy and X-ray photoelectron spectroscopy (XPS). We found that after the oxygen plasma treatment, the frictional and adhesive forces between the silicon AFM probe and MoS2 firstly increased with oxygen plasma treating time due to the plasma-induced sulfur vacancies that could attract ambient moistures onto its surface. The absorbed water molecules will lead to the formation of nanoscale water meniscus between the AFM probe and MoS2 surface, resulting in the increase of adhesive force. However, after a longer period of oxygen treatment, both the friction and adhesion abruptly decreases. This was attributed to the formation of MoO3 and a number of obvious cracks and nanoscrolls on the MoS2 surface that leads to a much coarser topography. This rougher surface will result in a reduced effective contact area between the AFM tip and sample surface, and give rise to the observed smaller frictional and adhesive forces. Our findings show that oxygen plasma processing used in device fabrication may substantially alter the morphological and nanotribological properties of MoS2. These results may find applications in future NEMS.

摘要 i Abstract ii 第1章 緒論 1 第2章 原子力顯微鏡(atomic force microscope)簡介 4 2-1 原子力顯微鏡的技術發展史 4 2-2 原子力顯微鏡原理 5 2-3 原子力顯微鏡基本模式介紹 7 2-3-1 接觸式模式(contact mode) 7 2-3-2 非接觸式模式(non-contact mode) 8 2-3-3 輕敲式模式(tapping mode) 8 2-4 力與距離關係圖(force-distance curve) 9 2-5 原子力顯微鏡探針彈性係數(spring constant)校正 10 2-6 側向力顯微鏡(lateral force microscope, LFM) 12 2-6-1 側向力顯微鏡原理 12 2-6-2 側向力顯微鏡探針扭轉靈敏度(torsional sensitivity)校正原理 13 第3章 奈米級摩擦力學簡介 18 3-1 摩擦力的歷史與巨觀尺度下的摩擦力學 18 3-2 奈米級摩擦力學的特性 18 3-3 奈米級摩擦力學與古典接觸力學 19 第4章 電漿表面處理簡介 20 4-1 電漿產生原理簡介 20 4-2 電漿技術 23 4-2-1 二維材料上的電漿表面處理 23 4-2-2 氧電漿對二硫化鉬的影響 23 第5章 樣品製備與實驗方法 24 5-1 二硫化鉬簡介 24 5-2 二硫化鉬製備 25 5-2-1 機械剝離法 25 5-2-2 化學氣相沉積法 26 5-3 表面形貌量測 29 5-4 摩擦性質量測 29 5-5 力-距離曲線分布影像量測 30 5-6 拉曼光譜量測 30 5-7 X射線光電子能譜術量測 32 第6章 實驗結果與討論 34 6-1 光學影像 34 6-2 二硫化鉬表面形貌性質 35 6-3 拉曼光譜分析 42 6-4 X射線光電子能譜分析 45 6-5 力-距離曲線分布影像結果 47 6-6 摩擦性質量測結果 49 第7章 總結 51 7-1 結果與討論 51 參考文獻 53

[1] D.Z. Segu, J.-H. Kim, S.G. Choi, Y.-S. Jung, S.-S. Kim, Application of Taguchi techniques to study friction and wear properties of MoS2 coatings deposited on laser textured surface, Surface and Coatings Technology, 232 (2013) 504-514.
[2] J. Lee, Z. Wang, K. He, R. Yang, J. Shan, P.X.-L. Feng, Electrically tunable single- and few-layer MoS<sub>2</sub> nanoelectromechanical systems with broad dynamic range, Science Advances, 4 (2018) eaao6653.
[3] P.E. West, Introduction to Atomic Force Microscopy: Theory, Practice, Applications, P. West2006.
[4] S.M. Cook, K.M. Lang, K.M. Chynoweth, M. Wigton, R.W. Simmonds, T.E. Schäffer, Practical implementation of dynamic methods for measuring atomic force microscope cantilever spring constants, Nanotechnology, 17 (2006) 2135-2145.
[5] M. Varenberg, I. Etsion, G. Halperin, An improved wedge calibration method for lateral force in atomic force microscopy, Review of Scientific Instruments, 74 (2003) 3362-3367.
[6] B. Bhushan, Nanotribology and Nanomechanics: An Introduction, 2008.
[7] F.P. Bowden, F.P. Bowden, D. Tabor, The Friction and Lubrication of Solids, Clarendon Press2001.
[8] K.L. Johnson, Contact Mechanics, Cambridge University Press, Cambridge, 1985.
[9] S.M. Tan, A. Ambrosi, Z. Sofer, Š. Huber, D. Sedmidubský, M. Pumera, Pristine Basal- and Edge-Plane-Oriented Molybdenite MoS2 Exhibiting Highly Anisotropic Properties, Chemistry – A European Journal, 21 (2015) 7170-7178.
[10] K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric Field Effect in Atomically Thin Carbon Films, Science, 306 (2004) 666.
[11] Q.H. Wang, K. Kalantar-Zadeh, A. Kis, J.N. Coleman, M.S. Strano, Electronics and optoelectronics of two-dimensional transition metal dichalcogenides, Nature Nanotechnology, 7 (2012) 699-712.
[12] S. Wang, Y. Rong, Y. Fan, M. Pacios, H. Bhaskaran, K. He, J.H. Warner, Shape Evolution of Monolayer MoS2 Crystals Grown by Chemical Vapor Deposition, Chemistry of Materials, 26 (2014) 6371-6379.
[13] P. Sun, Y. Liu, J. Ma, W. Li, K. Zhang, Y. Yuan, Controllable growth of continuous monolayer MoS2 by balancing the moles of gaseous precursors via argon flow, CrystEngComm, 21 (2019) 6969-6977.
[14] A. Kuc, N. Zibouche, T. Heine, Influence of quantum confinement on the electronic structure of the transition metal sulfide $T$S${}_{2}$, Physical Review B, 83 (2011) 245213.
[15] M.R. Islam, N. Kang, U. Bhanu, H.P. Paudel, M. Erementchouk, L. Tetard, M.N. Leuenberger, S.I. Khondaker, Tuning the electrical property via defect engineering of single layer MoS2 by oxygen plasma, Nanoscale, 6 (2014) 10033-10039.
[16] P. Joensen, R.F. Frindt, S.R. Morrison, Single-layer MoS2, Materials Research Bulletin, 21 (1986) 457-461.
[17] L. Margulis, G. Salitra, R. Tenne, M. Talianker, Nested fullerene-like structures, Nature, 365 (1993) 113-114.
[18] R. Tenne, L. Margulis, M. Genut, G. Hodes, Polyhedral and cylindrical structures of tungsten disulphide, Nature, 360 (1992) 444-446.
[19] Y. Feldman, E. Wasserman, D.J. Srolovitz, R. Tenne, High-Rate, Gas-Phase Growth of MoS&lt;sub&gt;2&lt;/sub&gt; Nested Inorganic Fullerenes and Nanotubes, Science, 267 (1995) 222.
[20] M. Chhowalla, G.A.J. Amaratunga, Thin films of fullerene-like MoS2 nanoparticles with ultra-low friction and wear, Nature, 407 (2000) 164-167.
[21] J. Xiao, D. Choi, L. Cosimbescu, P. Koech, J. Liu, J.P. Lemmon, Exfoliated MoS2 Nanocomposite as an Anode Material for Lithium Ion Batteries, Chemistry of Materials, 22 (2010) 4522-4524.
[22] K. Chang, W. Chen, l-Cysteine-Assisted Synthesis of Layered MoS2/Graphene Composites with Excellent Electrochemical Performances for Lithium Ion Batteries, ACS Nano, 5 (2011) 4720-4728.
[23] M. Sun, J. Adjaye, A.E. Nelson, Theoretical investigations of the structures and properties of molybdenum-based sulfide catalysts, Applied Catalysis A: General, 263 (2004) 131-143.
[24] S. Balendhran, S. Walia, H. Nili, J.Z. Ou, S. Zhuiykov, R.B. Kaner, S. Sriram, M. Bhaskaran, K. Kalantar-zadeh, Two-Dimensional Molybdenum Trioxide and Dichalcogenides, Advanced Functional Materials, 23 (2013) 3952-3970.
[25] M. Amani, M.L. Chin, A.G. Birdwell, T.P. O’Regan, S. Najmaei, Z. Liu, P.M. Ajayan, J. Lou, M. Dubey, Electrical performance of monolayer MoS2 field-effect transistors prepared by chemical vapor deposition, Applied Physics Letters, 102 (2013) 193107.
[26] K.F. Mak, K. He, J. Shan, T.F. Heinz, Control of valley polarization in monolayer MoS2 by optical helicity, Nature Nanotechnology, 7 (2012) 494-498.
[27] R.S. Sundaram, M. Engel, A. Lombardo, R. Krupke, A.C. Ferrari, P. Avouris, M. Steiner, Electroluminescence in Single Layer MoS2, Nano Letters, 13 (2013) 1416-1421.
[28] B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, A. Kis, Single-layer MoS2 transistors, Nature Nanotechnology, 6 (2011) 147-150.
[29] K.F. Mak, C. Lee, J. Hone, J. Shan, T.F. Heinz, Atomically Thin ${mathrm{MoS}}_{2}$: A New Direct-Gap Semiconductor, Physical Review Letters, 105 (2010) 136805.
[30] W.M.R. Divigalpitiya, R.F. Frindt, S.R. Morrison, Inclusion Systems of Organic Molecules in Restacked Single-Layer Molybdenum Disulfide, Science, 246 (1989) 369.
[31] B.K. Miremadi, S.R. Morrison, High activity catalyst from exfoliated MoS2, Journal of Catalysis, 103 (1987) 334-345.
[32] R.F. Frindt, A.S. Arrott, A.E. Curzon, B. Heinrich, S.R. Morrison, T.L. Templeton, R. Divigalpitiya, M.A. Gee, P. Joensen, P.J. Schurer, J.L. LaCombe, Exfoliated MoS2 monolayers as substrates for magnetic materials, Journal of Applied Physics, 70 (1991) 6224-6226.
[33] G. Eda, H. Yamaguchi, D. Voiry, T. Fujita, M. Chen, M. Chhowalla, Photoluminescence from Chemically Exfoliated MoS2, Nano Letters, 11 (2011) 5111-5116.
[34] Z. Zeng, Z. Yin, X. Huang, H. Li, Q. He, G. Lu, F. Boey, H. Zhang, Single-Layer Semiconducting Nanosheets: High-Yield Preparation and Device Fabrication, Angewandte Chemie International Edition, 50 (2011) 11093-11097.
[35] A. Castellanos-Gomez, M. Barkelid, A.M. Goossens, V.E. Calado, H.S.J. van der Zant, G.A. Steele, Laser-Thinning of MoS2: On Demand Generation of a Single-Layer Semiconductor, Nano Letters, 12 (2012) 3187-3192.
[36] A. Özden, F. Ay, C. Sevik, N.K. Perkgöz, CVD growth of monolayer MoS2: Role of growth zone configuration and precursors ratio, Japanese Journal of Applied Physics, 56 (2017) 06GG05.
[37] K.-K. Liu, W. Zhang, Y.-H. Lee, Y.-C. Lin, M.-T. Chang, C.-Y. Su, C.-S. Chang, H. Li, Y. Shi, H. Zhang, C.-S. Lai, L.-J. Li, Growth of Large-Area and Highly Crystalline MoS2 Thin Layers on Insulating Substrates, Nano Letters, 12 (2012) 1538-1544.
[38] Y.-H. Lee, X.-Q. Zhang, W. Zhang, M.-T. Chang, C.-T. Lin, K.-D. Chang, Y.-C. Yu, J.T.-W. Wang, C.-S. Chang, L.-J. Li, T.-W. Lin, Synthesis of Large-Area MoS2 Atomic Layers with Chemical Vapor Deposition, Advanced Materials, 24 (2012) 2320-2325.
[39] L. Luo, M. Shi, S. Zhao, W. Tan, X. Lin, H. Wang, F. Jiang, Hydrothermal synthesis of MoS2 with controllable morphologies and its adsorption properties for bisphenol A, Journal of Saudi Chemical Society, 23 (2019) 762-773.
[40] C. Gong, C. Huang, J. Miller, L. Cheng, Y. Hao, D. Cobden, J. Kim, R.S. Ruoff, R.M. Wallace, K. Cho, X. Xu, Y.J. Chabal, Metal Contacts on Physical Vapor Deposited Monolayer MoS2, ACS Nano, 7 (2013) 11350-11357.
[41] A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C.-Y. Chim, G. Galli, F. Wang, Emerging Photoluminescence in Monolayer MoS2, Nano Letters, 10 (2010) 1271-1275.
[42] C. Lee, H. Yan, L.E. Brus, T.F. Heinz, J. Hone, S. Ryu, Anomalous Lattice Vibrations of Single- and Few-Layer MoS2, ACS Nano, 4 (2010) 2695-2700.
[43] S. Bertolazzi, J. Brivio, A. Kis, Stretching and Breaking of Ultrathin MoS2, ACS Nano, 5 (2011) 9703-9709.
[44] K.F. Jensen, Modeling and Analysis of Low Pressure CVD Reactors, Journal of The Electrochemical Society, 130 (1983) 1950.
[45] A. Singh, M. Moun, R. Singh, Effect of different precursors on CVD growth of molybdenum disulfide, Journal of Alloys and Compounds, 782 (2019) 772-779.
[46] C. Pei, X. Li, H. Fan, J. Wang, H. You, P. Yang, C. Wei, S. Wang, X. Shen, H. Li, Morphological and Spectroscopic Characterizations of Monolayer and Few-Layer MoS2 and WSe2 Nanosheets under Oxygen Plasma Treatment with Different Excitation Power: Implications for Modulating Electronic Properties, ACS Applied Nano Materials, 3 (2020) 4218-4230.
[47] X.S. Chu, D.O. Li, A.A. Green, Q.H. Wang, Formation of MoO3 and WO3 nanoscrolls from MoS2 and WS2 with atmospheric air plasma, Journal of Materials Chemistry C, 5 (2017) 11301-11309.
[48] J. Martincová, M. Otyepka, P. Lazar, Is Single Layer MoS2 Stable in the Air?, Chemistry – A European Journal, 23 (2017) 13233-13239.
[49] T. Han, H. Liu, S. Wang, S. Chen, W. Li, X. Yang, M. Cai, K. Yang, Probing the Optical Properties of MoS2 on SiO2/Si and Sapphire Substrates, Nanomaterials, 9 (2019) 740.
[50] Y. Zhang, J. Liu, Y. Pan, K. Luo, J. Yu, Y. Zhang, K. Jia, H. Yin, H. Zhu, H. Tian, Z. Wu, The evolution of MoS2 properties under oxygen plasma treatment and its application in MoS2 based devices, Journal of Materials Science: Materials in Electronics, 30 (2019) 18185-18190.
[51] A. Kozbial, X. Gong, H. Liu, L. Li, Understanding the Intrinsic Water Wettability of Molybdenum Disulfide (MoS2), Langmuir, 31 (2015) 8429-8435.
[52] R. Szoszkiewicz, E. Riedo, Nucleation Time of Nanoscale Water Bridges, Physical Review Letters, 95 (2005) 135502.

下載圖示
QR CODE