簡易檢索 / 詳目顯示

研究生: 林建男
Lin, Chien-Nan
論文名稱: 對苯二腈、雙磷烷、含氮異環碳烯橋接之EFe3Cu2 (E = S, Se, Te) 錯合物: 合成、轉換、半導性以及催化
Dicyanobenzene-, Diphosphine-, and N-Heterocyclic Carbene-Bridged EFe3Cu2 (E = S, Se, Te) Complexes: Synthesis, Transformation, Semiconductivity, and Catalysis
指導教授: 謝明惠
Shieh, Ming-Huey
學位類別: 博士
Doctor
系所名稱: 化學系
Department of Chemistry
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 203
中文關鍵詞: 金屬團簇物羰基配子同耦合反應
英文關鍵詞: S, Se, Te, metal clusters, carbonyl ligands, homocoupling reactions
論文種類: 學術論文
相關次數: 點閱:131下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 1. S/Fe/Cu/Dppx 系統之研究
    透過蒸氣揮發與機械式研磨的化學方法,具有雙磷配基dppe連結著SFe3Cu2的團簇物 [{(m3-S)Fe3(CO)9}Cu2(dppe)] 與其一維聚合物[{(m4-S)Fe3(CO)9}Cu2(dppe)(MeCN)2]n 間存在著固態可逆轉換關係。其中聚合物[{(m4-S)Fe3(CO)9}Cu2(dppe)(MeCN)2]n能隙為1.69 eV,具有半導體特性。
    2. Se, Te/Fe/Cu/p-DCB 系統之研究
    當固態反應物 [EFe3(CO)9Cu2(MeCN)2] (E = Se, Te) 與取代基1,4-dicyanobenzene (p-DCB) 分別以1:1 以及 1:1.5的比例混合並加入幾滴THF進行研磨,可合成兩種以EFe3(CO)9Cu2為基底THF引入且取代基p-DCB分別以單股和混合單股與雙股橋接的型式所形成之一維聚合物[SeFe3(CO)9Cu2(p-DCB)1.5•0.5THF]n (1a-THF) 與[TeFe3(CO)9Cu2(p-DCB)•THF]n (2b-THF)。X光繞射分析顯示聚合物1a-THF其上雙股p-DCB相鄰苯環間呈現平行位移排列並有著分子內pi···pi作用力且1a-THF或2b-THF其晶格溶劑THF上的氧原子可和鄰近p-DCB上的氫原子相互作用形成微弱之C─H…O氫鍵。當研磨的溶劑替換為CH2Cl2,只有得到以TeFe3(CO)9Cu2為基底,混合單股與雙股p-DCB橋接的聚合物 [TeFe3(CO)9Cu2(p-DCB)1.5]n (1b)。反之,一旦於60度加熱並抽真空,1a-THF上的晶格溶劑THF可被移除並生成聚合物 [SeFe3(CO)9Cu2(p-DCB)1.5]n (1a)。1a和1b為isomorphous且其晶體結構同呈緊密堆積。有趣地,當[EFe3(CO)9Cu2(MeCN)2] (E = Se, Te) 與取代基p-DCB以1:1.5比例混合並加入幾滴CH2Cl2/toluene (v/v = 1/1) 進行研磨,可合成出以EFe3(CO)9Cu2為基底甲苯引入且取代基p-DCB分別以混合單股與雙股橋接的型式所連接之一維聚合物[EFe3(CO)9Cu2(p-DCB)1.5•0.5toluene]n (E = Se, 1a-toluene; Te, 1b-toluene),其中甲苯的苯環與鄰近p-DCB上傾斜苯環的氫原子形成顯著的C─H···pi作用力。此外,藉由加入溶劑THF、CH2Cl2、 CH2Cl2/toluene 或是添加額外的 p-DCB 取代基進行溶劑輔助研磨,聚合物1a、1a-THF和 1a-toluene間抑或是 1b-toluene、2b-THF和 1b間可進行可逆地固態結構轉換,伴隨著晶格溶劑的吸附與脫附、晶體位移堆積以及晶體至晶體間的膨脹與收縮現象。此外,導電度的丈量呈現出聚合物1a(1b)、1a(1b)-toluene和 2b-THF具有半導體行為 (直流電導率, 10−3−10−2 Ω−1cm−1; 能隙, 1.42−1.50 eV),其導電度會受到pi···pi或是C─H···O作用力調控,此現象進一步使用DFT理論計算加以解釋。
    3. Te/Fe/Cu/NHC 系統之研究
    一新型TeFe3(CO)9併入雙銅含氮異環碳烯 (N-heterocyclic carbene) 錯合物可直接藉由一鍋化反應製備。透過引入具推電子與立障的團簇陰離子基團 [TeFe3(CO)9]2− 及含氮異環碳烯作為取代基,這些以雙銅為基底的錯合物對同耦合催化硼酸反應表現出顯著的催化活性,即少量銅承載量 (0.5 or 1.0 mol%) 以及高產率 (直達98%)。

    1. S/Fe/Cu/Dppx System
    A reversible vapochemical and mechanochemical solid-state transformation between a dppe-linked SFe3Cu2-based cluster [{(m3-S)Fe3(CO)9}Cu2(dppe)] and its 1D polymer [{(m4-S)Fe3(CO)9}Cu2(dppe)(MeCN)2]n, was demonstrated, in which polymer [{(m4-S)Fe3(CO)9}Cu2(dppe)(MeCN)2]n exhibited semi-conducting properties with an energy gap of 1.69 eV.
    2. Se, Te/Fe/Cu/p-DCB System
    When solid reactants [EFe3(CO)9Cu2(MeCN)2] (E = Se, Te) and 1,4-dicyanobenzene (p-DCB) were mixed in 1:1 and 1:1.5 ratios and ground with drops of THF, two EFe3(CO)9Cu2-based THF-encapsulated single/double and single/single p-DCB-linked 1D polymers [SeFe3(CO)9Cu2(p-DCB)1.5•0.5THF]n (1a-THF) and [TeFe3(CO)9Cu2(p-DCB)•THF]n (2b-THF) were obtained, respectively. X-ray analysis showed that the neighboring benzenes of the double p-DCB linkers of 1a-THF displayed a parallel-displaced geometry with an intramolecular pi···pi interaction and the oxygen atom of the lattice THF of 1a-THF or 2b-THF interacted with its adjacent hydrogen atoms of the p-DCB ligands to give weak C─H…O hydrogen bonds. When the grinding solvent changed into CH2Cl2, only TeFe3(CO)9Cu2-based single/double p-DCB-linked polymer [TeFe3(CO)9Cu2(p-DCB)1.5]n (1b) was obtained. Instead, upon heating at 60 oC under vacuum, the lattice THF of 1a-THF could be removed to give [SeFe3(CO)9Cu2(p-DCB)1.5]n (1a). 1a and 1b were isomorphous and exhibited tight crystal-packed structures. Interestingly, when [EFe3(CO)9Cu2(MeCN)2] and p-DCB were mixed in a 1:1.5 ratio and ground with CH2Cl2/toluene (v/v = 1/1), the EFe3(CO)9Cu2-based toluene-encapsulated single/double p-DCB-linked polymers [EFe3(CO)9Cu2(p-DCB)1.5•0.5toluene]n (E = Se, 1a-toluene; Te, 1b-toluene) were obtained, in which the benzene ring of the guest toluene and its adjacent hydrogen atom of the titled benzene of the p-DCB ligand showed significant C─H···pi interaction. In addition, mechanochemically reversible solid-state structural transformations among 1a, 1a-THF, and 1a-toluene, as well as 1b-toluene, 2b-THF, and 1b were achieved by grinding with THF, CH2Cl2, CH2Cl2/toluene, or additional p-DCB ligands, accompanied with the uptake and removal of the lattice solvent, the slippage of the packing layers, and crystal to crystal expansion and contraction. In addition, the measurement of conductivity showed that polymers 1a(1b), 1a(1b)-toluene, and 2b-THF exhibited semiconducting behaviors (dc conductivity, 10−3−10−2 Ω−1cm−1; energy gap, 1.42−1.50 eV) which could be tuned by weak pi···pi interaction and C─H···O hydrogen bonding, elucidated by DFT calculations.
    3. Te/Fe/Cu/NHC System
    A new type of TeFe3(CO)9-incorporated dicopper N-heterocyclic carbene (NHC) complexes was obtained directly from one-pot reactions. By the introduction of the electron-donating and bulky cluster anion [TeFe3(CO)9]2− and NHCs as the ligands, these di-Cu(I)-based complexes exhibited pronounced catalyst activities toward the homocoupling of arylboronic acids with low Cu loadings (0.5 or 1.0 mol%) and high yields (up to 98%).

    Abstract (Chinese) І Abstract (English) III Chapter 1 Vapochemically and Mechanochemically Reversible Polymerization/Depolymerization of S─Fe─Cu Carbonyl Clusters 1 Chapter 2 Mechanochemical Synthesis and Reversible Structural Transformations of EFe3Cu2 (E = Se, Te)-based 1D Carbonyl Polymers: Breathing Effects and Semiconducting Behaviors Tuned by Weak pi···pi and C─H···O Bonding 30 Abstract 30 2.1 Introduction 31 2.2 Results and Discussion 33 2.3 Conclusion 48 2.4 Experimental Section 50 Chapter 3 Design and Synthesis of Tellurium-Iron Carbonyls-Incorporated Dicopper(I) N-Heterocyclic Carbene (NHC) Complexes and Their Catalytic Suzuki Homocoupling Reactions 156 Appendix A Publications 203

    Chapter 1
    1 (a) T. Lasanta, M. E. Olmos, A. Laguna, J. M. López-de-Luzuriaga and P. Naumov, J. Am. Chem. Soc., 2011, 133, 16358; (b) I. O. Koshevoy, Y.-C. Chang, A. J. Karttunen, M. Haukka, T. Pakkanen and P.-T. Chou, J. Am. Chem. Soc., 2012, 134, 6564; (c) G. M. Espallargas, M. Hippler, A. J. Florence, P. Fernandes, J. van de Streek, M. Brunelli, W. I. F. David, K. Shankland and L. Brammer, J. Am. Chem. Soc., 2007, 129, 15606; (d) S. Libri, M. Mahler, G. M. Espallargas, D. C. N. G. Singh, J. Soleimannejad, H. Adams, M. D. Burgard, N. P. Rath, M. Brunelli and L. Brammer, Angew. Chem. Int. Ed., 2008, 47, 1693; (e) L.-Q. Mo, J.-H. Jia, L.-J. Sun and Q.-M. Wang, Chem. Commun., 2013, 48, 8691; (f) Z. Huang, P. S. White and M. Brookhart, Nature, 2010, 465, 598; (g) S. B. L. Vollrath, C. Hu, S. Bräse and K. Kirshenbaum, Chem. Commun., 2013, 49, 2317.
    2 (a) D. Braga, S. L. Giaffreda, F. Grepioni, A. Pettersen, L. Maini, M. Curzi and M. Polito, Dalton Trans., 2006, 1249; (b) T. Friščić and W. Jones, Cryst. Growth Des., 2009, 9, 1621; (c) T. Friščić, Chem. Soc. Rev., 2012, 41, 3493; (d) S. L. James, C. J. Adams, C. Bolm, D. Braga, P. Collier, T. Friščić, F. Grepioni, K. D. M. Harris, G. Hyett, W. Jones, A. Krebs, J. Mack, L. Maini, A. G. Orpen, I. P. Parkin, W. C. Shearouse, J. W. Steed and D. C. Waddell, Chem. Soc. Rev., 2012, 41, 413; (e) T. Friščić, J. Mater. Chem., 2010, 20, 7599; (f) G. A. Bowmaker, Chem. Commun., 2013, 49, 334. (g) E. Boldyreva, Chem. Soc. Rev., 2013, 42, 7719. (h) G.-W. Wang, Chem. Soc. Rev., 2013, 42, 7668.
    3 (a) G. K. Kole and J. J. Vittal, Chem. Soc. Rev., 2013, 42, 1755; (b) T. Friščić, I. Halasz, V. Štrukil, M. Eckert-Maksić and R. E. Dinnebier, Croat. Chem. Acta, 2012, 85, 367; (c) J. J. Vittal, Coord. Chem. Rev., 2007, 251, 1781.
    4 (a) M. Shieh, C.-Y. Miu, Y.-Y. Chu and C.-N. Lin, Coord. Chem. Rev., 2012, 256, 637; (b) S. Zacchini, Eur. J. Inorg. Chem., 2011, 4125.
    5 (a) T. Nakajima, A. Ishiguro and Y. Wakatsuki, Angew. Chem. Int. Ed., 2001, 40, 1066; (b) J. Bai, E. Leiner and M. Scheer, Angew. Chem. Int. Ed., 2002, 41, 783; (c) M. Scheer, L. Gregoriades, J. Bai, M. Sierka, G. Brunklaus and H. Eckert, Chem. Eur. J., 2005, 11, 2163; (d) C. Femoni, F. Kaswalder, M. C. Iapalucci, G. Longoni and S. Zacchini, Chem. Commun., 2006, 2135; (e) C. Femoni, R. D. Pergola, M. C. Iapalucci, F. Kaswalder, M. Riccò and S. Zacchini, Dalton Trans., 2009, 1509; (f) R. D. Pergola, A. Sironi, C. Manassero and M. Manassero, Eur. J. Inorg. Chem., 2009, 4618; (g) P. Leoni, L. Marchetti, V. Bonuccelli, S. K. Mohapatra, A. Albinati, S. Rizzato, Chem. Eur. J., 2010, 16, 9468; (h) M. Shieh, M.-H. Hsu, W.-S. Sheu, L.-F. Jang, S.-F. Lin, Y.-Y. Chu, C.-Y. Miu, Y.-W. Lai, H.-L. Liu and J. L. Her, Chem. Eur. J., 2007, 13, 6605; (i) M. Shieh, C.-H. Ho, W.-S. Sheu, B.-G. Chen, Y.-Y. Chu, C.-Y. Miu, H.-L. Liu and C.-C. Shen, J. Am. Chem. Soc., 2008, 130, 14114.
    6 J.-J. Cherng, Y.-C. Tsai, C.-H. Ueng, G.-H. Lee, S.-M. Peng and M. Shieh, Organometallics, 1998, 17, 255.
    7 (a) G. J. Kubas, Inorg. Synth. 1979, 19, 90; (b) M. G. Simmons, C. L. Merrill, L. J. Wilson, L. A. Bottomley and K. M. Kadish, J. Chem. Soc., Dalton Trans., 1980, 1827.
    8 (a) A. E. Reed and F. Weinhold, J. Chem. Phys., 1983, 78, 4066; (b) A. E. Reed, R. B. Weinstock and F. Weinhold, J. Chem. Phys., 1985, 83, 735.
    9 K. B. Wiberg, Tetrahedron, 1968, 24, 1083.
    10 (a) N. Shan, F. Toda and W. Jones, Chem. Commun., 2002, 2372; (b) G. A. Bowmaker, N. Chaichit, C. Pakawatchai, B. W. Skelton and A. H. White, Dalton Trans., 2008, 2926; (c) A. V. Trask, W. D. S. Motherwell and W. Jones, Chem. Commun., 2004, 890; (d) A. V. Trask, N. Shan, W. D. S. Motherwell, W. Jones, S. Feng, R. B. H. Tan and K. J. Carpenter, Chem. Commun., 2005, 880; (e) T. Friščić, A. V. Trask, W. Jones and W. D. S. Motherwell, Angew. Chem. Int. Ed., 2006, 45, 7546; (f) D. Braga, M. Curzi, A. Johansson, M. Polito, K. Rubini and F. Grepioni, Angew. Chem. Int. Ed., 2006, 45, 142; (g) D. Braga, S. L. Giaffreda and F. Grepioni, Chem. Commun., 2006, 3877; (h) T. Friščić, L. Fábián, J. C. Burley, W. Jones and W. D. S. Motherwell, Chem. Commun., 2006, 5009.
    11 J. Y. Lee, H. J. Kim, J. H. Jung, W. Sim and S. S. Lee, J. Am. Chem. Soc., 2008, 130, 13838.

    Chapter 2
    (1) (a) Kitagawa, S.; Kitaura, R.; Noro, S. I. Angew. Chem., Int. Ed. 2004, 43, 2334─2375. (b) Yaghi, O. M.; O’Keeffe, M.; Ockwig, N. W.; Chae, H. K.; Eddaoudi, M.; Kim, J. Nature 2003, 423, 705─714.
    (2) (a) Kitagawa, S.; Uemura, K. Chem. Soc. Rev. 2005, 34, 109─119. (b) Bradshaw, D.; Claridge, J. B.; Cussen, E. J.; Prior, T. J.; Rosseinsky, M. J. Acc. Chem. Res. 2005, 38, 273─282.
    (3) (a) Serre, C.; Millange, F.; Thouvenot, C.; Nogués, M.; Marsolier, G.; Louër, D. Férey, G. J. Am. Chem. Soc. 2002, 124, 13519─13526. (b) Uemura, K.; Kitagawa, S.; Fukui, K.; Saito, K. J. Am. Chem. Soc. 2004, 126, 3817─3828. (c) Maji, T. K.; Uemura, K.; Chang, H. C.; Matsuda, R.; Kitagawa, S. Angew. Chem., Int. Ed. 2004, 43, 3269─3272. (d) Matsuda, R.; Kitaura, R.; Kitagawa, S.; Kubota, Y.; Kobayashi, T. C.; Horike, S.; Takata, M. J. Am. Chem. Soc. 2004, 126, 14063─14070. (e) Dybtsev, D. N.; Chun, H.; Kim, K. Angew. Chem., Int. Ed. 2004, 43, 5033─5035. (f) Halder, J. G.; Kepert, C. J.; Moubaraki, K.; Murray, K. S.; Cashion, J. D. Science 2002, 298, 1762─1765. (g) Cussen, E. J.; Claridge, J. B.; Rosseinsky, M. J.; Kepert, C. J. J. Am. Chem. Soc. 2002, 124, 9574─9581. (h) Biradha, K.; Hongo, Y.; Fujita, M. Angew. Chem., Int. Ed. 2002, 41, 3395─3398. (i) Min, K. S.; Suh, M. P. Chem. ─Eur. J. 2001, 7, 303─313. (j) Lee, E. Y.; Jang, S. Y.; Suh, M. P. J. Am. Chem. Soc. 2005, 127, 6374─6381.
    (4) (a) Samaranayake, M.; Bujnicki, J. M.; Carpenter, M.; Bhagwat, A. S. Chem. Rev. 2006, 106, 700─719. (b) Keeble, A. H.; Kirkpatrick, N.; Shimizu, S.; Kleanthous, C. Biochemistry 2006, 45, 3243─3254. (c) Wang, T.; Gu, S.; Ronni, T.; Du, Y. C.; Chen, X. J. Proteome Res. 2005, 4, 941─949. (d) Dziadek, S.; Hobel, A.; Schmitt, E.; Kunz, H. Angew. Chem., Int. Ed. 2005, 44, 7630─7635.
    (5) (a) Graziewicz, M. A.; Longley, M. J.; Copeland, W. C. Chem. Rev. 2006, 106, 383─405. (b) Riguet, E.; Tripathi, S.; Chaubey, B.; Desire, J.; Pandey, V. N.; Decout, J. L. J. Med. Chem. 2004, 47, 4806─4809. (c) Ren, J.; Qu, X.; Dattagupta, N.; Chaires, J. B. J. Am. Chem. Soc. 2001, 123, 6742─6743.
    (6) (a) Moro, S.; Gao, Z. G.; Jacobson, K. A.; Spalluto, G. Med. Res. Rev. 2006, 26, 131─159. (b) Zadmard, R.; Schrader, T. J. Am. Chem. Soc. 2005, 127, 904─915. (c) Shrout, A. L.; Montefusco, D. J.; Weis, R. M. Biochemistry 2003, 42, 13379─13385.
    (7) (a) Sun, H.; Tottempudi, U. K.; Mottishaw, J. D.; Basa, P. N.; Putta, A.; Sykes, A. G. Cryst. Growth Des. 2012, 12, 5655─5662. (b) Fuma, Y.; Ebihara, M.; Kutsumizu, S.; Kawamura, T. J. Am. Chem. Soc. 2004, 126, 12238─12239. (c) Fuma, Y.; Miyashita, O.; Kawamura, T.; Ebihara, M. Dalton Trans. 2012, 41, 8242─8251. (d) Takazaki, Y.; Yang, Z.; Ebihara, M.; Inoue, K.; Kawamura, T. Chem. Lett. 2003, 120─121.
    (8) Guillon, D. Struct. Bonding (Berlin) 1999, 95, 41─82.
    (9) Hoeben, F. J. M.; Jonkheijm, P.; Meijer, E. W.; Schenning, A. P. H. J. Chem. Rev. 2005, 105, 1491─1546.
    (10) Grimsdale, A. C.; Mullen, K. Angew. Chem., Int. Ed. 2005, 44, 5592─5629.
    (11) Genereux, J. C.; Barton, J. K. Chem. Rev. 2010, 110, 1642─1662.
    (12) (a) Shieh, M.; Miu, C.-Y.; Chu, Y.-Y.; Lin, C.-N. Coord. Chem. Rev. 2012, 256, 637─694; (b) Zacchini, S. Eur. J. Inorg. Chem. 2011, 4125─4145.
    (13) (a) Nakajima, T.; Ishiguro, A.; Wakatsuki, Y. Angew. Chem., Int. Ed. 2001, 40, 1066─1068. (b) Bai, J.; Leiner, E.; Scheer, M. Angew. Chem., Int. Ed. 2002, 41, 783─786. (c) Scheer, M.; Gregoriades, L.; Bai, J.; Sierka, M.; Brunklaus, G.; Eckert, H. Chem. ─Eur. J. 2005, 11, 2163─2169. (d) Femoni, C.; Kaswalder, F.; Iapalucci, M. C.; Longoni, G.; Zacchini, S. Chem. Commun. 2006, 2135─2137. (e) Femoni, C.; Pergola, R. D.; Iapalucci, M. C.; Kaswalder, F.; Riccò, M.; Zacchini, S. Dalton Trans. 2009, 1509─1511. (f) Pergola, R. D.; Sironi, A.; Manassero, C.; Manassero, M. Eur. J. Inorg. Chem. 2009, 4618─4621; (g) Leoni, P.; Marchetti, L.; Bonuccelli, V.; Mohapatra, S. K.; Albinati, A.; Rizzato, S. Chem. ─Eur. J. 2010, 16, 9468─9477. (h) Shieh, M.; Hsu, M.-H.; Sheu, W.-S.; Jang, L.-F.; Lin, S.-F.; Chu, Y.-Y.; Miu, C.-Y.; Lai, Y.-W.; Liu, H.-L.; Her, J. L. Chem. ─Eur. J. 2007, 13, 6605─6616; (i) Shieh, M.; Ho, C.-H.; Sheu, W.-S.; Chen, B.-G.; Chu, Y.-Y.; Miu, C.-Y.; Liu, H.-L.; Shen, C.-C. J. Am. Chem. Soc. 2008, 130, 14114─14116.
    (14) Lin, C.-N.; Jhu, W.-T.; Shieh, M. Chem. Commun. 2014, 1134─1136.
    (15) Janiak, C. J. Chem. Soc., Dalton Trans. 2000, 3885─3896.
    (16) Desiraju, G. R. Acc. Chem. Res. 1996, 29, 441─449.
    (17) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, Jr., J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, N. J.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö .; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian 09, Revision B.01; Gaussian, Inc.: Wallingford, CT, 2009.
    (18) Spek, A. L. J. Appl. Crystallogr. 2003, 36, 7─13.
    (19) Tayubi, I. A.; Sethumadhavan, R. Int. J. Pharm. Pharm. Sci. 2011, 3, 212─218.
    (20) Femoni, C.; Della Pergola, R.; Iapalucci, M. C.; Kaswalder, F.; Riccò, M.; Zacchini, S. Dalton Trans. 2009, 1509─1511.
    (21) (a) Ferey, G.; Serre, C. Chem. Soc. Rev. 2009, 38, 1380─1399. (b) Thallapally, P. K.; McGrail, B. P.; Dalgarno, S. J.; Schaef, H. T.; Tian, J.; Atwood, J. L. Nat. Mater. 2008, 7, 146─150. (c) Thallapally, P. K.; Tian, J.; Kishan, M. R.; Fernandez, C. A.; Dalgarno, S. J.; McGrail, P. B.; Warren, J. E.; Atwood, J. L. J. Am. Chem. Soc. 2008, 130, 16842─16843. (d) Thallapally, P. K.; McGrail, P. B.; Dalgarno, S. J.; Atwood, J. L. Cryst. Growth Des. 2008, 8, 2090─2092.
    (22) (a) Wooten, F. Optical Properties of Solid; Academic Press: New York, 1972. (b) Liu, H. L.; Tanner, D. B.; Pullen, A. E.; Abboud, K. A.; Reynolds, J. R. Phys. Rev. B 1996, 53, 10557. (c) Liu, H. L.; Chou, L.-K.; Abboud, K. A.; Ward, B. H.; Fanucci, G. E.; Granroth, G. E.; Canadell, E.; Meisel, M. W.; Talham, D. R.; Tanner, D. B. Chem. Mater. 1997, 9, 1865.
    (23) (a) Cerrada, E.; Diaz, M. C.; Diaz, C.; Lagura, M.; Sabater, A. Synth. Met. 2001, 119, 91─92. (b) Uemura, K.; Fukui, K.; Nishikawa, H.; Arai, S.; Matsumoto, K.; Oshio, H. Angew. Chem. Int. Ed. Engl. 2005, 44, 5459─5464. (c) Kobel, W.; Hanack, M. Inorg. Chem. 1986, 25, 103─107. (d) Knecht, S.; Polley, R.; Hanack, M. Appl. Organomet. Chem. 1996, 10, 649─660. (e) Hanack, M.; Keppeler, U.; Schulze, H. J. Synth. Met. 1987, 20, 347─356. (f) Delgado, S.; Sanz Miguel, P. J.; Priego, J. L.; Jimenez-Aparicio, R.; Gomez-García, C. J.; Zamora, F. Inorg. Chem. 2008, 47, 9128─9130. (g) Chen, Y.; Wang, Z.-O.; Ren, H.-X.; Li, D.-X.; Liu, D.; Zhang, Y.; Lang, J.-P. Cryst. Growth Des. 2009, 9, 4963─4968.
    (24) Delley, B. J. Chem. Phys. 1990, 92, 508─517.
    (25) Shriver, D. F.; Drezdon, M. A. The Manipulation of Air-Sensitive Compounds; Wiley-VCH Publishers: New York, 1986.
    (26) Shieh, M.; Tsai, Y.-C. Inorg. Chem. 1994, 33, 2303─2305.
    (27) Shieh, M.; Chen, P.-F.; Tsai, Y.-C.; Shieh, M.-H.; Peng, S.-M.; Lee, G.-H. Inorg. Chem. 1995, 34, 2251─2254.
    (28) Simmons, M. G.; Merrill, C. L.; Wilson, L. J.; Bottomley, L. A.; Kadish, K. M. J. Chem. Soc., Dalton Trans. 1980, 1827─1837.
    (29) Bruker, SADABS, Bruker AXS Inc., Madison, Wisconsin, USA, 2003.
    (30) (a) Sheldrick, G. M. SHELXL97, version 97-2; University of Göttingen, Germany, 1997. (b) Sheldrick, G. M. Acta Crystallogr. 2008, A64, 112─122.
    (31) Truhlar, D. G.; Zhao, Y. Theor. Chem. Acc. 2006, 120, 215─241.
    (32) Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett 1996, 77, 3865─3868.
    (33) Grimme, S. T. Comput. Chem. 2004, 25, 1463─1473.
    (34) (a) Schwerdtfeger, P.; Dolg, M.; Schwarz, W. H. E.; Bowmaker, G. A.; Boyd, P. D. W. J. Chem. Phys. 1989, 91, 1762─1774. (b) Andrae, D.; Häußermann, U.; Dolg, M.; Stoll, H.; Preuß, H. Theor. Chim. Acta 1990, 77, 123─141. (c) Bergner, A.; Dolg, M.; Küchle, W.; Stoll, H.; Preuß, H. Mol. Phys. 1993, 80, 1431─1441.
    (35) Kubelka, P.; Munk, F. Z. Tech. Phys., 1931, 12, 593─601.
    (36) Tauc, J. Mater. Res. Bull., 1970, 5, 721─730.

    Chapter 3
    [1] a) P. Braunstein, J. Rosé in Metal Clusters in Chemistry, Vol. 2 (Eds.:
    P. Braunstein, L. A. Oro, P. R. Raithby), Wiley-VCH, Weinheim, 1999,
    Chapter 2.2, pp 616 ─677 ; b) "Heteronuclear Metal-Metal Bonds" R. D.
    Adams in Comprehensive Organometallic Chemistry II, Vol. 10 (Eds.: E.
    W. Abel, F. G. A. Stone, G. Wilkinson), Pergamon, Oxford, 1995; c)
    The Chemistry of Metal Cluster Complexes (Eds.: D. F. Shriver, H. D.
    Kaesz, R. D. Adams), Wiley-VCH, New York, 1990.
    [2] a) "Bimetallic magnets: Present and perspectives" C. Mathonière, J.-P.
    Sutter, J. V. Yakhmi in Magnetism: molecules to materials, Vol. 4 (Eds.:
    J. S. Miller, M. Drillon), Wiley-VCH, Weinheim, 2002; b) C. Femoni, M.
    C. Iapalucci, F. Kaswalder, G. Longoni, S. Zacchini, Coord. Chem. Rev.
    2006, 250, 1580─1604; c) S. Zacchini, Eur. J. Inorg. Chem. 2011,
    4125─4145; d) M. Shieh, C.-Y. Miu, Y.-Y. Chu, C.-N. Lin, Coord. Chem.
    Rev. 2012, 256, 637─694, and references therein.
    [3] a) Metal Clusters in Catalysis, Studies in Surface Science and Catalysis
    Series, Vol. 29 (Eds.: B. C. Gates, L. Guczi, H. Knözinger), Elsevier,
    Amsterdam, 1986; b) S. Hermans, T. Khimyak, R. Raja, G. Sankar, J.
    M. Thomas, B. F. G. Johnson, in Nanotechnology in Catalysis (Eds.: B.
    Zhou, S. Hermans, G. A. Somorjai), Kluwer Academic, Plenum
    Publishers, New York, 2004; c) R. D. Adams, B. Captain, Acc. Chem.
    Res. 2009, 42, 409─418; d) J. M. Thomas, B. F. G. Johnson, R. Raja,
    G. Sankar, P. A. Midgley, Acc. Chem. Res. 2003, 36, 20─30; e) L. N.
    Lewis, Chem. Rev. 1993, 93, 2693─2730; f) A. Sivaramakrishna, H. S.
    Clayton, B. C. E. Makhubela, J. R. Moss, Coord. Chem. Rev. 2008, 252,
    1460─1485.
    [4] a) N-Heterocyclic Carbenes in Transition Metal Catalysis (Ed.: F.
    Glorius), Springer, Berlin, 2007; b) N-Heterocyclic Carbenes in
    Synthesis (Ed.: S. P. Nolan), Wiley-VCH, Weinheim, 2006; c) NHeterocyclic Carbenes in Transition Metal Catalysis and
    Organocatalysis (Ed.: C. S. J. Cazin), Springer, Heidelberg, 2011; d) F.
    Lazreg, F. Nahra, C. S. J. Cazin, Coord. Chem. Rev. 2015, 293-294,
    48─79. e) J. D. Egbert, C. S. J. Cazin, S. P. Nolan, Catal. Sci. Technol.
    2013, 3, 912─926; f) J. C. Y. Lin, R. T. W. Huang, C. S. Lee, A.
    Bhattacharyya, W. S. Hwang, I. J. B. Lin, Chem. Rev. 2009, 109,
    3561─3598; g) S. Díez-González, N. Marion, S. P. Nolan, Chem. Rev.
    2009, 109, 3612─3676, and reference therein; h) F. Glorius, Top.
    Organomet. Chem. 2007, 21, 1─20.
    [5] a) G. G. Melikyan, Acc. Chem. Res. 2015, 48, 1065─1079.
    [6] a) J. A. Cabeza, P. García-Álvarez, Chem. Soc. Rev. 2011, 40,
    5389─5405, and references therein; b) J. Campos, L. S.
    Sharninghausen, R. H. Crabtree, D. Balcells, Angew. Chem. Int. Ed.
    2014, 53, 12808─12811; c) C.-H. Cheng, R.-Y. Guo, Q. Chi, H.-B. Song,
    L.-F. Tang, Transit. Met. Chem. 2015, 40, 297─304; d) S. Saha, B.
    Captain, Inorg. Chem. 2014, 53, 1210─1216; e) R. Della Pergola, A.
    Sironi, A. Rosehr, V. Colombo, A. Sironi, Inorg. Chem. Commun. 2014,
    49, 27─29; f) Y. Liu, R. Ganguly, H. V. Huynh, W. K. Leong,
    Organometallics 2013, 32, 7559─7563; g) R. D. Adams, J. Tedder, Y.
    O. Wong, J. Organomet. Chem., DOI 10.1016/
    j.jorganchem.2015.03.024; h) S. Banerjee, M. K. Karunananda, S.
    Bagherzadeh, U. Jayarathne, S. R. Parmelee, G. W. Waldhart, N. P.
    Mankad, Inorg. Chem. 2014, 53, 11307─11315.
    [7] a) P. Puthiaraj, P. Suresh, K. Pitchumani, Green Chem. 2014, 16,
    2865─2875, and references therein; b) B. Kaboudin, Y. Abedi, T.
    Yokomatsu, Eur. J. Org. Chem. 2011, 6656─6662, and references
    therein; c) C. F. Nising, U. K. Schmid, M. Nieger, S. Bräse, J. Org.
    Chem. 2004, 69, 6830─6833; d) B. Rao, W. Zhang, L. Hu, M. Luo,
    Green Chem. 2012, 14, 3436─3440.
    [8] R. N. Dhital, H. Sakurai, Asian J. Org. Chem. 2014, 3, 668─684, and
    references therein.
    [9] a) A. R. Kapdi, G. Dhangar, J. L. Serrano, J. A. De Haro, P. Lozano, I.
    J. S. Fairlamb, RSC Adv. 2014, 4, 55305─55312, and references
    therein; b) M. Guo, L. Qi, M. Lv, X. Zhou, H. Liang, S. Chen, Lett. Org.
    Chem. 2015, 12, 205─209.
    [10] T. Vogler, A. Studer, Adv. Synth. Catal. 2008, 350, 1963─1967, and
    references therein.
    [11] a) K. Sharma, V. Bhalla, M. Kumar, RSC Adv. 2014, 4, 53795─53800,
    and reference therein; b) A. Monopoli, A. Afzal, C. di Franco, N.
    Ditaranto, N. Cioffi, A. Nacci, P. Cotugno, L. Torsi, J. Mol. Catal. A 2014,
    386, 101─107, and reference therein; c) K. M. Parida, S. Singha, P. C.
    Sahoo, S. Sahu, J. Mol. Catal. A 2011, 342─343, 11─17.
    [12] a) A. S. Demir, Ö. Reis, M. Emrullahoglu, J. Org. Chem. 2003, 68,
    10130─10134; b) G. Cheng, M. Luo, Eur. J. Org. Chem. 2011,
    2519─2523; c) B. Kaboudin, T. Haruki, T. Yokomatsu, Synthesis 2011,
    91─96; d) N. Kirai, Y. Yamamoto, Eur. J. Org. Chem. 2009, 1864─1867;
    e) S. A. R. Mulla, S. S. Chavan, M. Y. Pathan, S. M. Inamdar, T. M. Y.
    Shaikh, RSC Adv. 2015, 5, 24675─24680; f) B. A. Dar, S. Singh, N.
    Pandey, A. P. Singh, P. Sharma, A. Lazar, M. Sharma, R. A.
    Vishwakarma, B. Singh, Applied Catalysis A-General, 2014, 470,
    232─238.
    [13] a) N. A. Pushkarevsky, S. N. Konchenko, M. Scheer, J. Cluster Sci.
    2007, 18, 606─617; b) M. Shieh, C.-H. Ho, C. R. Chimie 2005, 8,
    1838─1849; c) P. Mathur, Adv. Organomet. Chem. 1997, 41, 243─315;
    d) M. Shieh, Y.-W. Lai, J. Chin. Chem. Soc. 2002, 49, 851─859; e) M.
    Shieh, J. Cluster Sci. 1999, 10, 3─36; f) M. Shieh, C.-Y. Miu, C.-J. Lee,
    W.-C. Chen, Y.-Y. Chu, H.-L. Chen, Inorg. Chem. 2008, 47,
    11018─11031; g) B.-G. Chen, C.-H. Ho, C.-J. Lee, M. Shieh, Inorg.
    Chem. 2009, 48, 10757─10768.
    [14] M. Shieh, P.-F. Chen, Y.-C. Tsai, M.-H. Shieh, S.-M. Peng, G.-H. Lee,
    Inorg. Chem. 1995, 34, 2251─2254, and references therein.
    [15] M. Shieh, C.-H. Ho, W.-S. Sheu, B.-G. Chen, Y.-Y. Chu, C.-Y. Miu, H.-L.
    Liu, C.-C. Shen, J. Am. Chem. Soc. 2008, 130, 14114─14116.
    [16] B. Liu, C. Chen, Y. Zhang, X. Liu, W. Chen, Organometallics 2013, 32,
    5451─5460, and references therein.
    [17] Cambridge Structural Database (CSD) from Cambridge
    Crystallographic Data Centre (http://www.ccdc.cam.ac.uk): F. H. Allen,
    Acta Crystallogr, Sect. B: Struct. Sci. 2002, 58, 380─388; CSD version
    5.36, update Nov. 2014.
    [18] C. Tubaro, A. Biffis, R. Gava, E. Scattolin, A. Volpe, M. Basato, M. M.
    Díaz-Requejo, P. J. Perez, Eur. J. Org. Chem. 2012, 1367─1372.
    [19] a) Physical Organic Chemistry (Ed.: L. P. Hammett), McGraw-Hill, New
    York, 1970; b) H. H. Jaffé, Chem. Rev. 1953, 53, 191─261.
    [20] a) K. Sun, S. Liu, P. M. Bec, T. G. Driver, Angew. Chem. Int. Ed. 2011,
    50, 1702─1706; b) T. M. Gregg, R. F. Algera, J. R. Frost, F. Hassan, R.
    J. Stewart, Tetrahedron Lett. 2010, 51, 6429─6432; c) M. M. DíazRequejo, P. J. Pérez, M. Brookhart, J. L. Templeton, Organometallics
    1997, 16, 4399─4402.

    無法下載圖示 本全文未授權公開
    QR CODE