研究生: |
潘珮珊 Pan, Pei-Shan |
---|---|
論文名稱: |
探討餐廳消費者對送餐機器人之使用態度及體驗價值對餐廳再訪意願之影響-以顧客的個人創新為調節變數 The Experience Value of and Use Attitude to Food Delivery Robots Among Restaurants' Customers: The Moderator Effect of Customer Innovativeness |
指導教授: |
雷芷卉
Lui, Tsz-Wai |
口試委員: |
雷芷卉
Lui, Tsz-Wai 申元洪 Shen,Yuan-Hong 許軒 Hsu,Hsuan |
口試日期: | 2024/07/18 |
學位類別: |
碩士 Master |
系所名稱: |
運動休閒與餐旅管理研究所 Graduate Institute of Sport, Leisure and Hospitality Management |
論文出版年: | 2025 |
畢業學年度: | 113 |
語文別: | 中文 |
論文頁數: | 160 |
中文關鍵詞: | 送餐機器人 、餐廳 、SOR理論 、體驗價值 、使用態度 |
英文關鍵詞: | Food Delivery Robot, Restaurant, SOR Theory, Experience Value, Usage Attitude |
DOI URL: | http://doi.org/10.6345/NTNU202500404 |
論文種類: | 學術論文 |
相關次數: | 點閱:21 下載:2 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
臺灣餐飲產業因缺工問題,促使業者開始導入送餐機器人,如今送餐機器人在第一線為消費者提供送餐服務,使消費者在餐廳內感受到的服務體驗更加多元。過往研究主要討論消費者對於餐廳送餐機器人的使用意願及態度,較少討論消費者的體驗價值感受,因此本研究針對餐廳顧客對於送餐機器人的體驗價值感受進行討論。本研究以SOR理論為基礎,探討送餐機器人的設計屬性對於餐廳消費者體驗價值及使用態度的影響,以及使用態度及體驗價值對於再訪意願的影響。另外,本研究也加入顧客創新的概念探討顧客創新對於體驗價值和使用態度的調節效果。
本研究採量化研究法,採取便利抽樣方式,透過網路社群平台 (Line、Facebook、Instagram、Dcard) 以及研究者親自到餐廳及賣場等較多民眾聚集的地方,邀請過去三個月內曾到訪設有送餐機器人餐廳用餐的名眾進行網路問卷填寫,本研究共回收302份有效問卷,以偏最小平方法的結構方程模型 (PLS-SEM) 進行統計分析。研究發現,機器人的知覺安全 (PS)、有用性 (PU)、易用性 (PEOU)、真人感 (PH) 和友善感 (PF) 會影響顧客的使用態度;而知覺安全 (PS)、有用性 (PU) 、易用性 (PEOU)、友善感 (PF) 和知覺酷感 (PC) 會影響體驗價值。另外,送餐機器人的有用性 (PU) 及機器人能力 (RC) 對體驗價值感受的影響關係,會受到顧客的個人創新 (CI) 的調節,而再訪意願 (RI) 會受到體驗價值 (EV) 的影響。根據研究發現的結果,本研究建議製造商在設計送餐機器人時可以著重於機器人功能層面的設計,並降低對機器人擬人化設計的追求,藉此提升使用者的使用態度及體驗感受,最後建議餐飲業者未來可以制定出更完善的人機協作服務模式,為消費者提供更好的用餐體驗。
Due to labor shortages, the restaurant industry in Taiwan has begun to integrate delivery robots, which now serve customers at the frontline, thereby diversifying the dining experience within restaurants. Previous research has primarily focused on consumers' willingness to use and attitudes toward restaurant delivery robots, with less emphasis on their perceived experiential value. Therefore, this study aims to explore restaurant customers' perceived experiential value concerning delivery robots. Based on the SOR (Stimulus-Organism-Response) theory, this study investigates the impact of the design attributes of delivery robots on restaurant consumers' experiential value and usage attitudes, as well as the influence of usage attitudes and experiential value on the intention to revisit. Additionally, the concept of customer innovativeness is incorporated to examine its moderating effect on experiential value and usage attitudes.
This study employs a quantitative research methodology, utilizing convenience sampling. Data was collected through online social platforms (Line, Facebook, Instagram, Dcard) and in-person solicitation by researchers at restaurants and marketplaces with high pedestrian traffic. Individuals who had visited restaurants featuring delivery robots within the past three months were invited to participate in an online survey. A total of 302 valid questionnaires were retrieved and analyzed using partial least squares structural equation modeling (PLS-SEM).
The study found that the perceived safety (PS), usefulness (PU), ease of use (PEOU), humanness (PH), and friendliness (PF) of delivery robots influence customers' usage attitudes. Additionally, perceived safety (PS), usefulness (PU), ease of use (PEOU), friendliness (PF), and perceived coolness (PC) impact experiential value. Moreover, the influence of the usefulness (PU) and robot competence (RC) of delivery robots on perceived experiential value is moderated by customers' innovativeness (CI). And the intention to revisit (RI) is affected by experiential value (EV).
Based on the research findings, we suggest that manufacturers should focus on the functional aspects of delivery robot design and reduce the emphasis on anthropomorphic features to enhance user attitudes and experiences. Additionally, it is recommended that the food service industry develop more comprehensive human-robot collaboration service models to provide consumers with an improved dining experience.
104人力銀行 (2023,07月)。2023民生消費產業人才白皮書。104職場力。https://blog.104.com.tw/wp-content/uploads/2023/07/18152054/104%E4%BA%BA%E5%8A%9B%E9%8A%80%E8%A1%8C%E3%80%8A%E6%B0%91%E7%94%9F%E6%B6%88%E8%B2%BB%E7%94%A2%E6%A5%AD%E4%BA%BA%E6%89%8D%E7%99%BD%E7%9A%AE%E6%9B%B8%E3%80%8B-1.pdf
Cindy Lo (2020,11月16日)。餐飲自動化與機器人志不在全面取代人力,而是提升價值效率的另一個選擇。NOM Magazine。https://nommagazine.com/%E9%A4%90%E9%A3%B2%E8%87%AA%E5%8B%95%E5%8C%96%E8%88%87%E6%A9%9F%E5%99%A8%E4%BA%BA-%E5%BF%97%E4%B8%8D%E5%9C%A8%E5%85%A8%E9%9D%A2%E5%8F%96%E4%BB%A3%E4%BA%BA%E5%8A%9B%EF%BC%8C%E8%80%8C%E6%98%AF/
Hair, J., Hult, G., Ringle, C., & Sarstedt, M. (2016)。結構方程模式:偏最小平方法 PLS-SEM (湯家偉;初版)。高等教育。(原著出版於 2014 年)
內政部戶政司 (無日期)。人口統計資料_縣市人口按性別及五齡組(63)。內政部戶政司全球資訊網。擷取於11月23日2023年,https://www.ris.gov.tw/app/portal/346
內政部戶政司 (無日期)。出生數及粗出生率(按登記及發生)(36)。內政部戶政司全球資訊網。擷取於12月05日2023年,https://www.ris.gov.tw/app/portal/346
內政部戶政司 (無日期)。死亡數及粗死亡率(按登記及發生)(36)。內政部戶政司全球資訊網。擷取於12月05日2023年,https://www.ris.gov.tw/app/portal/346
內政部戶政司 (無日期)。遷入及遷出登記(77)。內政部戶政司全球資訊網。擷取於12月05日2023年,https://www.ris.gov.tw/app/portal/346
甲電國際股份有限公司官網 (無日期)。合作店家。甲電國際股份有限公司官網。擷取於11月23日2023年,https://gvglobalvision.com/partner/
申元洪、陳惠慈 (2021)。旅客對於無人智慧旅館之行為意圖:以科技接受模型為例。旅遊管理研究,12(1),1-22。https://doi.org/10.6934/TMR.202112_12(1).0001
朱永蕙、劉嘉麒 (2016)。體驗行銷、體驗價值、滿意度與再購意願之研究-以C-Bike為例。島嶼觀光研究,9(3),53-74。https://www.airitilibrary.com/Article/Detail?DocID=20725388-201609-201609300007-201609300007-53-74
行政院主計處 (無日期)。事業人力僱用狀況調查(職位空缺概況)電子書。中華民國統計資訊網。擷取於06月20日2024年,https://www.stat.gov.tw/News.aspx?n=2837&sms=11110
行政院主計處 (無日期)。缺工及人力需求統計。中華民國統計資訊網。擷取於06月20日2024年,https://www.stat.gov.tw/News_Content.aspx?n=3106&s=232874
吳德晃 (2004)。專業表現、服務努力、滿意度與小費之關係。旅遊管理研究,4(1),39~52。http://nhuir.nhu.edu.tw/handle/987654321/6263
吳麗珍、黃惠滿、李浩銑 (2014)。方便取樣和立意取樣之比較。護理雜誌,61(3),105-111。https://doi.org/10.6224/jn.61.3.105
李忠祐 (2023,09月07日)。智慧餐飲:機器人在餐飲業的多元應用。財團法人資訊工業策進會數位轉型研究院。https://www.find.org.tw/index/tech_obser/browse/404154bbaf1033ab5a4e6c3e7135acc9/
和達工業科技 (無日期)。餐廳系列產品。和達工業科技官網。擷取於2月25日2024年,https://www.herdartech.com/article.php?lang=tw&tb=6&cid=4
林淑瓊、張銀益、林衛國、王之廷 (2016)。以體驗行銷觀點探討網路商店促成購買衝動之影響因素。資訊管理學報,23(3),247-276。https://www.airitilibrary.com/Article/Detail/16085752-201607-201608030013-201608030013-247-276
姚舜 (2023年03月06日)。解決餐飲缺工機器人服務時代來臨。工商時報。https://www.ctee.com.tw/news/20230306700053-430503
國家發展委員會 (無日期)。自然增加及社會增加趨勢。國家發展委員會官網。擷取於12月05日2023年,https://www.ndc.gov.tw/Content_List.aspx?n=815932455EDB959E
國家發展委員會 (無日期)。高齡化時程。國家發展委員會人口推估。擷取於11月23日2023年,https://www.ndc.gov.tw/Content_List.aspx?n=D527207EEEF59B9B#Accesskey_L
崧象有限公司 (無日期)。智能送餐機器人全系列產品。崧象有限公司官網。擷取於2月25日2024年,https://www.de-tools.com.tw/collections/%E6%99%BA%E8%83%BD%E9%80%81%E9%A4%90%E6%A9%9F%E5%99%A8%E4%BA%BA%E5%85%A8%E7%B3%BB%E5%88%97
張如沄 (2019)。以SOR理論探討體驗行銷、品牌態度對購買意願之影響 — 以IKEA為例 [未出版碩士論文]。國立臺中科技大學。https://hdl.handle.net/11296/2fppgr
淘寶網站 (無日期)。智慧服務送餐機器人送餐車T1海底撈外婆家酒店餐廳飯店火鍋店端菜。淘寶越南網站。擷取於6月24日2024年https://vn.world.taobao.com/item/713227506501.htm?spm=a21wu.24122187.recommend-goods.6
陳妍霖、林東銘 (2022,04月12日)。本土疫情燒餐飲業推「送餐機器人」減少接觸。民視新聞網。https://www.ftvnews.com.tw/news/detail/2022412F08M1
陳欣誼 (2021)。遊客新科技體驗對目的地行為意圖影響之研究-以i-Ride飛行劇院為例 [未出版碩士論文]。國立成功大學。https://hdl.handle.net/11296/pz7q62
陳春安、黃淑玲、楊蓓涵、陳偉業 (2019)。服務品質、體驗價值、滿意度及再購意願之關係-以某禮品公司為例。資訊與管理科學,12(1),27-44。https://www.airitilibrary.com/Article/Detail?DocID=20720971-201907-201908200010-201908200010-27-44
陳寬裕 (2022)。結構方程模型分析實務:SPSS與SmartPLS的運用。五南。
曾沛慈 (2021)。以解構計畫行為理論與使用滿足理論探討消費者對服務型機器人之行為意圖 [未出版碩士論文]。國立臺中科技大學。https://hdl.handle.net/11296/xb6qtc
曾麗芳 (2022,02月21日)。AI機器人服務生餐飲業吹科技風。中時新聞網工商時報。https://www.chinatimes.com/newspapers/20220221000176-260204?chdtv
黃郁嵐 (2020)。金融智能客服品質與使用意圖關係之研究:個人創新性的調節效果。[未出版碩士論文]。國立臺北大學。https://hdl.handle.net/11296/z7a92r
楊涵淩 (2017)。通路應用服務型機器人接受度研究-以Pepper為例。[未出版碩士論文]。國立臺灣師範大學。https://etds.lib.ntnu.edu.tw/thesis/detail/03f5170f392b1f03dc5c4bcf40b19745/#
董芳武 (2013)。兒童對人形機器人之感知與評價研究。設計學報,18(3),23-39。https://www.airitilibrary.com/Article/Detail?DocID=16068327-201309-201310090024-201310090024-23-39
熊治民、黃仲宏 (2018年)。2018 IEKTopics服務型機器人實踐智慧化服務應用願景。IEK產業情報網。https://ieknet.iek.org.tw/iekrpt/rpt_open.aspx?rpt_idno=651206019
劉千綾 (2017,10月17日)。調查:10月缺工108萬人再創高住宿餐飲缺21.6萬居首。中央通訊社。https://www.cna.com.tw/news/ahel/202310170226.aspx
鄧之卿、郭子卉 (2013)。餐廳款待表現對顧客情緒及再訪意願關係之研究。觀光旅遊研究學刊,8(1),61-75。https://www.airitilibrary.com/Article/Detail/19936362-201306-201307170032-201307170032-61-75
盧姵君 (2019)。以餐廳顧客科技焦慮、需要互動對其前往自助服務科技餐廳消費意願之研究 [未出版碩士論文]。中國文化大學。https://hdl.handle.net/11296/7963fw
蕭文龍 (2020)。統計分析入門與應用:SPSS中文版+SmartPLS 3(PLS-SEM)(第三版)。碁峰資訊股份有限公司。
賴政豪、余宗龍、張祐誠、徐尚偉 (2023)。固定翼超輕型載具同乘飛行者刺激尋求、體驗價值與再訪意願關係之研究:兼論從SOR觀點分析冒險遊憩活動參與者。戶外遊憩研究,36(2),65-103。https://doi.org/10.6130/JORS.202306_36(2).0003
鴻匠科技股份有限公司官網 (無日期)。送餐機器人。鴻匠科技股份有限公司官網。擷取於11月23日2023年,https://www.hong-chiang.com.tw/zh-TW/category/K.html
Agarwal, R., & Karahanna, E. (2000). Time flies when you're having fun: Cognitive absorption and beliefs about information technology usage. MIS quarterly, 665-694. https://doi.org/10.2307/3250951
Agarwal, R., & Prasad, J. (1998). A conceptual and operational definition of personal innovativeness in the domain of information technology. Information systems research, 9(2), 204-215. https://doi.org/10.1287/isre.9.2.204
Altarteer, S., & Charissis, V. (2019). Technology acceptance model for 3D virtual reality system in luxury brands online stores. Ieee Access, 7, 64053-64062. https://doi.org/10.1109/ACCESS.2019.2916353
Bartneck, C., Kulić, D., Croft, E., & Zoghbi, S. (2009). Measurement instruments for the anthropomorphism, animacy, likeability, perceived intelligence, and perceived safety of robots. International journal of social robotics, 1, 71-81. https://doi.org/10.1007/s12369-008-0001-3
Becker, J.-M., Cheah, J.-H., Gholamzade, R., Ringle, C. M., & Sarstedt, M. (2023). PLS-SEM’s most wanted guidance. International Journal of Contemporary Hospitality Management, 35(1), 321-346. https://doi.org/10.1108/IJCHM-04-2022-0474
Belanche, D., Casaló, L. V., & Flavián, C. (2021). Frontline robots in tourism and hospitality: service enhancement or cost reduction? Electronic Markets, 31, 477-492. https://doi.org/10.1007/s12525-020-00432-5
Belanche, D., Casaló, L. V., Flavián, C., & Schepers, J. (2020). Service robot implementation: a theoretical framework and research agenda. The Service Industries Journal, 40(3-4), 203-225. https://doi.org/10.1080/02642069.2019.1672666
Belanche, D., Casaló, L. V., Schepers, J., & Flavián, C. (2021). Examining the effects of robots' physical appearance, warmth, and competence in frontline services: The Humanness‐Value‐Loyalty model. Psychology & Marketing, 38(12), 2357-2376. https://doi.org/10.1002/mar.21532
Ceccato, V., & Masci, S. (2017). Airport environment and passengers' satisfaction with safety. Journal of Applied Security Research, 12(3), 356-373. https://doi.org/10.1080/19361610.2017.1315696
Cha, S. S. (2020). Customers’ intention to use robot-serviced restaurants in Korea: relationship of coolness and MCI factors. International Journal of Contemporary Hospitality Management, 32(9), 2947-2968. https://doi.org/10.1108/ijchm-01-2020-0046
Cheah, J.-H., Ting, H., Ramayah, T., Memon, M. A., Cham, T.-H., & Ciavolino, E. (2019). A comparison of five reflective–formative estimation approaches: reconsideration and recommendations for tourism research. Quality & Quantity, 53(3), 1421-1458. https://doi.org/10.1007/s11135-018-0821-7
Chen, C. F., & Girish, V. G. (2023). Investigating the use experience of restaurant service robots: the cognitive–affective–behavioral framework. International Journal of Hospitality Management, 111, 103482. https://doi.org/10.1016/j.ijhm.2023.103482
Chen, C.-F., & VG, G. (2023). Antecedents and outcomes of use experience of airport service robot: The stimulus-organism-response (SOR) framework. Journal of Vacation Marketing, 29(4), 570-583. https://doi.org/10.1177/13567667221109267
Cheng, Y. M. (2014). Exploring the intention to use mobile learning: the moderating role of personal innovativeness. Journal of Systems and Information Technology, 16(1), 40-61. https://doi.org/10.1108/JSIT-05-2013-0012
Choi, S., & Wan, L. (2021). The rise of service robots in the hospitality industry: Some actionable insights. Boston Hospitality Review, 1-11. https://www.bu.edu/bhr/tag/sungwoo-choi/
Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS quarterly, 13(3), 319-340. https://doi.org/10.2307/249008
Doorn, V. J., Mende, M., Noble, S. M., Hulland, J., Ostrom, A. L., Grewal, D., & Petersen, J. A. (2017). Domo arigato Mr. Roboto: Emergence of automated social presence in organizational frontlines and customers’ service experiences. Journal of Service Research, 20(1), 43-58. https://doi.org/10.1177/1094670516679272
Douglas, S. P., & Craig, C. S. (2007). Collaborative and iterative translation: An alternative approach to back translation. Journal of International Marketing, 15(1), 30-43. https://doi.org/10.1509/jimk.15.1.030
El Said, O., & Al Hajri, S. (2022). Are customers happy with robot service? Investigating satisfaction with robot service restaurants during the COVID-19 pandemic. Heliyon, 8(3), e08986. https://doi.org/10.1016/j.heliyon.2022.e08986
Erdem, A., Barakazı, M., & Şeker, F. (2023). The effect of attitude and acceptability of using robots in restaurants on behavioral intention. Journal of Tourismology, 9(1), 1-11. https://doi.org/10.26650/jot.2023.9.1.1191050
Ferland, F., & Tapus, A. (2017, 14 December). Crowd sourcing ‘approach behavior’control parameters for human-robot interaction. 2017 26th IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN), Lisbon, Portugal. https://ieeexplore.ieee.org/document/8172392
Fishbein, M., & Ajzen, I. (1975). Belief, attitude, intention, and behavior: an introduction to theory and research. Reading, MA: Addison-Wesley. pp.216 https://www.researchgate.net/publication/233897090_Belief_attitude_intention_and_behaviour_An_introduction_to_theory_and_research
Fornell, C., & Larcker, D. F. (1981). Structural equation models with unobservable variables and measurement error: Algebra and statistics. Journal of Marketing Research, 18(3), 382–388. https://doi.org/10.1177/002224378101800313
Franke, G., & Sarstedt, M. (2019). Heuristics versus statistics in discriminant validity testing: a comparison of four procedures. Internet Research, 29(3), 430-447. https://doi.org/10.1108/IntR-12-2017-0515
Frankfurt. (2023, October 12). Staff Shortage Boosts Service Robots – Sales Up 48%. https://ifr.org/ifr-press-releases/news/staff-shortage-boosts-service-robots-sales-up-48
Gaskin, J. (2022). SmartPLS 4: Importance Performance Map Analysis. https://www.youtube.com/watch?v=PtQNh6OPerI
Gudergan, S. P., Ringle, C. M., Wende, S., & Will, A. (2008). Confirmatory tetrad analysis in PLS path modeling. Journal of Business Research, 61(12), 1238-1249. https://doi.org/https://doi.org/10.1016/j.jbusres.2008.01.012
Gupta, K. P., & Pande, S. (2023). Understanding generation Z consumers’ revisit intentions to robotic service restaurants. Young Consumers, 24(3), 331-351. https://doi.org/10.1108/YC-09-2022-1598
Hair, J. F., Sarstedt, M., Ringle, C. M., & P, G. S. (2024). Advanced Issues in Partial Least Squares Structural Equation Modeling (PLS-SEM) (2nd ed.). Sage: Thousand Oaks.
Hlee, S., Park, J., Park, H., Koo, C., & Chang, Y. (2023). Understanding customer's meaningful engagement with AI-powered service robots. Information Technology & People, 36(3), 1020-1047. https://doi.org/10.1108/ITP-10-2020-0740
Huang, D., Chen, Q., Huang, S., & Liu, X. (2023). Consumer intention to use service robots: a cognitive–affective–conative framework. International Journal of Contemporary Hospitality Management, ahead-of-print. https://doi.org/10.1108/IJCHM-12-2022-1528
Im, S., Bhat, S., & Lee, Y. (2015). Consumer perceptions of product creativity, coolness, value and attitude. Journal of Business Research, 68(1), 166-172. https://doi.org/https://doi.org/10.1016/j.jbusres.2014.03.014
International Federation of Robotics. (2024). Service Robots. International Federation of Robotics. https://ifr.org/service-robots
Jang, H.-W., & Lee, S.-B. (2020). Serving robots: Management and applications for restaurant business sustainability. Sustainability, 12(10), 3998. https://doi.org/10.3390/su12103998
Jang, S. H., & Lee, C. W. (2018). The impact of location-based service factors on usage intentions for technology acceptance: The moderating effect of innovativeness. Sustainability, 10(6), 1876. https://doi.org/10.3390/su10061876
Jarvis, C. B., MacKenzie, S. B., & Podsakoff, P. M. (2003). A critical review of construct indicators and measurement model misspecification in marketing and consumer research. Journal of Consumer Research, 30(2), 199-218. https://doi.org/10.1086/376806
Jin, N., Line, N. D., & Goh, B. (2013). Experiential value, relationship quality, and customer loyalty in full-service restaurants: The moderating role of gender. Journal of Hospitality Marketing & Management, 22(7), 679-700. https://doi.org/10.1080/19368623.2013.723799
Jung, I., Quan, W., Yu, J., & Han, H. (2023). Are you ready for robot services? Exploring robot-service adoption behaviors of hotel-goers. International Journal of Hospitality Management, 109, 103404. https://doi.org/10.1016/j.ijhm.2022.103404
Jung, S. Y., & Cha, S. S. (2022). Attitude of Consumers toward Restaurant Service Robots Based on UTAUT2 Theory. The Korean Journal of Food & Health Convergence, 8(1), 9-16. https://koreascience.kr/article/JAKO202206355310053.page
Kervenoael, D. R., Hasan, R., Schwob, A., & Goh, E. (2020). Leveraging human-robot interaction in hospitality services: Incorporating the role of perceived value, empathy, and information sharing into visitors’ intentions to use social robots. Tourism Management, 78, 104042. https://doi.org/10.1016/j.tourman.2019.104042
Kim, J., & Park, E. (2019). Beyond coolness: predicting the technology adoption of interactive wearable devices. Journal of Retailing and Consumer Services, 49, 114-119. https://doi.org/10.1016/j.jretconser.2019.03.013
Kim, S. H., Yoo, S. R., & Jeon, H. M. (2021). The role of experiential value, novelty, and satisfaction in robot barista coffee shop in South Korea: COVID-19 crisis and beyond. Service Business, 1-20. https://doi.org/10.1007/s11628-021-00467-4
Kim, Y. J., Park, J. S., & Jeon, H. M. (2021). Experiential value, satisfaction, brand love, and brand loyalty toward robot barista coffee shop: the moderating effect of generation. Sustainability, 13(21), 12029. https://doi.org/10.3390/su132112029
Kock, N., & Hadaya, P. (2018). Minimum sample size estimation in PLS‐SEM: The inverse square root and gamma‐exponential methods. Information systems journal, 28(1), 227-261. https://doi.org/10.1111/isj.12131
Lee, J. S., Kwak, M. K., & Cha, S. S. (2021). The effect of motivated consumer innovativeness on perceived value and intention to use for senior customers at AI food service store. Journal of Distribution Science, 19(9), 91-100. https://doi.org/10.15722/jds.19.9.202109.91
Lee, W. H., Lin, C. W., & Shih, K. H. (2018). A technology acceptance model for the perception of restaurant service robots for trust, interactivity, and output quality. International Journal of Mobile Communications, 16(4), 361-376. https://doi.org/10.1504/IJMC.2018.092666
Li, Y., & Wang, C. (2022). Effect of customer's perception on service robot acceptance. International Journal of Consumer Studies, 46(4), 1241-1261. https://doi.org/10.1111/ijcs.12755
Liao, C.-W. (2014). Exploring the Correlations among Service Encounter, Customer Perceived Value, Purchase Intention in Hospitality Industry. The Anthropologist, 17(3), 823-830. https://doi.org/10.1080/09720073.2014.11891496
Lin, I. Y., & Mattila, A. S. (2021). The value of service robots from the hotel guest’s perspective: A mixed-method approach. International Journal of Hospitality Management, 94, 102876. https://doi.org/10.1016/j.ijhm.2021.102876
Lin, V. S., Zhang, X., Ren, Y., Huang, W.-J., & Xiao, H. (2023). Tourists’ value co-creation with service robots: antecedents and mechanisms. Journal of Hospitality & Tourism Research, 0(0). https://doi.org/10.1177/10963480231197091
Liu, X. S., Yi, X. S., & Wan, L. C. (2022). Friendly or competent? The effects of perception of robot appearance and service context on usage intention. Annals of Tourism Research, 92, 103324. https://doi.org/10.1016/j.annals.2021.103324
Lyu, F., Wang, M., & Choi, J. (2023, January 03). Detection of Interaction-based Knowledge for Reclassification of Service Robots: Big Data Analytics Perspective. 56th Hawaii International Conference on System Sciences, Hawaii, US.
Mathwick, C., Malhotra, N., & Rigdon, E. (2001). Experiential value: conceptualization, measurement and application in the catalog and Internet shopping environment. Journal of Retailing, 77(1), 39-56. https://doi.org/https://doi.org/10.1016/S0022-4359(00)00045-2
Mehrabian, A., & Russell, J. A. (1974). An approach to environmental psychology. the MIT Press. https://mitpress.mit.edu/9780262630719/an-approach-to-environmental-psychology/
Meissner, A., Trübswetter, A., Conti-Kufner, A. S., & Schmidtler, J. (2020). Friend or foe? understanding assembly workers’ acceptance of human-robot collaboration. ACM Transactions on Human-Robot Interaction, 10(1), 1-30. https://doi.org/10.1145/3399433
Meng, B., & Choi, K. (2018). An investigation on customer revisit intention to theme restaurants: The role of servicescape and authentic perception. International Journal of Contemporary Hospitality Management, 30(3), 1646-1662. https://doi.org/10.1108/IJCHM-11-2016-0630
Moffis, K. T., Mitchell, D. T., & Choi, H. (2021, November 3). Perceived Safety and Acceptance of Robot-to-Human Communication Interface Modalities during Varying Human-Robot Interactions. TMS Proceedings 2021. https://tmb.apaopen.org/pub/321qwfls/release/1
Mori, M. (1970). The uncanny valley: the original essay by Masahiro Mori. IEEE Spectrum, 6. https://spectrum.ieee.org/the-uncanny-valley
Osman, E.-S., & Hajri, A. S. (2022). Are customers happy with robot service? Investigating satisfaction with robot service restaurants during the COVID-19 pandemic. Heliyon, 8(3), e08986. https://doi.org/10.1016/j.heliyon.2022.e08986
Parasuraman, A. (2000). Technology Readiness Index (TRI) a multiple-item scale to measure readiness to embrace new technologies. Journal of Service Research, 2(4), 307-320. https://doi.org/10.1177/109467050024001
Pizam, A., Ozturk, A. B., Hacikara, A., Zhang, T., Balderas-Cejudo, A., Buhalis, D., Fuchs, G., Hara, T., Meira, J., & Revilla, R. G. M. (2024). The role of perceived risk and information security on customers' acceptance of service robots in the hotel industry. International Journal of Hospitality Management, 117, 103641. https://doi.org/10.1016/j.ijhm.2023.103641
Qiu, H., Li, M., Shu, B., & Bai, B. (2019). Enhancing hospitality experience with service robots: The mediating role of rapport building. Journal of Hospitality Marketing & Management, 29(3), 247-268. https://doi.org/10.1080/19368623.2019.1645073
Ramachandran, B. R. N., & Lim, J. C. (2021, March 08). User validation study of a social robot for use in hospital wards Companion of the 2021 ACM/IEEE international conference on human-robot interaction, Boulder CO USA. https://dl.acm.org/doi/10.1145/3434074.3447162
Ramayah, T., Cheah, J., Chuah, F., Ting, H., & Memon, M. (2018). Partial least squares structural equation modeling (PLS-SEM) using
SmartPLS 3.0: An updated guide and practical guide to statistical analysis (2nd ed.). Kuala Lumpur, Malaysia: Pearson. https://www.researchgate.net/publication/341249789
Rogers, E. M., Singhal, A., & Quinlan, M. M. (1995). Diffusion of innovations. In An integrated approach to communication theory and research (pp. 432-448). Routledge.
Sarstedt, M., & Cheah, J.-H. (2019). Partial least squares structural equation modeling using SmartPLS: a software review. Journal of Marketing Analytics, 7(3), 196-202.
Seo, K. H., & Lee, J. H. (2021). The Emergence of Service Robots at Restaurants: Integrating Trust, Perceived Risk, and Satisfaction. Sustainability, 13(8), 4431. https://doi.org/10.3390/su13084431
Seo, S. (2022). When Female (Male) Robot Is Talking To Me: Effect of service robots’ gender and anthropomorphism on customer satisfaction. International Journal of Hospitality Management, 102, 103166. https://doi.org/10.1016/j.ijhm.2022.103166
SmartPLS 3.0: An updated guide and practical guide to statistical analysis (2nd ed.). Kuala Lumpur, Malaysia: Pearson.
Söderlund, M. (2022). Service robots with (perceived) theory of mind: An examination of humans’ reactions. Journal of Retailing and Consumer Services, 67, 102999. https://doi.org/10.1016/j.jretconser.2022.102999
Sproull, L., Subramani, M., Kiesler, S., Walker, J. H., & Waters, K. (1996). When the interface is a face. Human-computer interaction, 11(2), 97-124. https://doi.org/10.1207/s15327051hci1102_1
Sundar, S. S., Tamul, D. J., & Wu, M. (2014). Capturing “cool”: Measures for assessing coolness of technological products. International Journal of Human-Computer Studies, 72(2), 169-180. https://doi.org/10.1016/j.ijhcs.2013.09.008
Taylor Jr, S., DiPietro, R. B., & So, K. K. F. (2018). Increasing experiential value and relationship quality: An investigation of pop-up dining experiences. International Journal of Hospitality Management, 74, 45-56. https://doi.org/10.1016/j.ijhm.2018.02.013
Tussyadiah, I. P., & Park, S. (2018, January 24-26). Consumer Evaluation of Hotel Service Robots Information and Communication Technologies in Tourism 2018, Jonkping, Sweden. https://link.springer.com/chapter/10.1007/978-3-319-72923-7_24#citeas
Tuzovic, S., & Paluch, S. (2023). Human-Robot Collaboration–Managing the Integration of Service Robots in the Frontline. In Gestaltung des Wandels im Dienstleistungsmanagement: Band 2: Kundenperspektive–Anbieterperspektive–Mitarbeiterperspektive (pp. 597-614). Springer. https://doi.org/10.1007/978-3-658-41815-1_23
Warren, C., & Campbell, M. C. (2014). What makes things cool? How autonomy influences perceived coolness. Journal of Consumer Research, 41(2), 543-563. https://doi.org/10.1086/676680
Wirtz, J., Kunz, W., & Paluch, S. (2021). The service revolution, intelligent automation and service robots. European Business Review, 29(5), 909. https://www.europeanbusinessreview.com/the-service-revolution-intelligent-automation-and-service-robots/
Wirtz, J., Patterson, P. G., Kunz, W. H., Gruber, T., Lu, V. N., Paluch, S., & Martins, A. (2018). Brave new world: service robots in the frontline. Journal of Service Management, 29(5), 907-931. https://doi.org/10.1108/JOSM-04-2018-0119
Wu, C. H.-J., & Liang, R.-D. (2009). Effect of experiential value on customer satisfaction with service encounters in luxury-hotel restaurants. International Journal of Hospitality Management, 28(4), 586-593. https://doi.org/https://doi.org/10.1016/j.ijhm.2009.03.008
Yoo, S.-R., Kim, S.-H., & Jeon, H.-M. (2022). How does experiential value toward robot barista service affect emotions, storytelling, and behavioral intention in the context of COVID-19? Sustainability, 14(1), 450. https://doi.org/10.3390/su14010450
Yörük, T., Akar, N., & Özmen, N. V. (2023). Research trends on guest experience with service robots in the hospitality industry: A bibliometric analysis. European Journal of Innovation Management.
Zhang, X., Balaji, M., & Jiang, Y. (2022). Robots at your service: value facilitation and value co-creation in restaurants. International Journal of Contemporary Hospitality Management, 34(5), 2004-2025. https://doi.org/10.1108/IJCHM-10-2021-1262
Złotowski, J., Strasser, E., & Bartneck, C. (2014, March 03-06). Dimensions of anthropomorphism: from humanness to humanlikeness 2014 9th ACM/IEEE International Conference on Human-Robot Interaction (HRI), Bielefeld Germany. https://ieeexplore.ieee.org/document/8542511