簡易檢索 / 詳目顯示

研究生: 許志榮
論文名稱: 胜肽包覆奈米粒子之合成及螢光免疫分析上之應用
指導教授: 陳家俊
Chen, Chia-Chun
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2003
畢業學年度: 91
語文別: 中文
論文頁數: 62
中文關鍵詞: 胜肽螢光免疫分析奈米粒子
英文關鍵詞: peptide, fluoroimmunoassay, nanoparticle
論文種類: 學術論文
相關次數: 點閱:192下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 我們利用能與硫化鋅晶體產生結合能力的生肽分子,來置換硒化鎘/硫化鋅奈米粒子表面的有機分子,而合成出具有高光學穩定性、水溶性的奈米粒子。不同尺寸的奈米粒子經由此官能基轉換之後仍保有其原本的吸收、螢光光學性質,且奈米粒子的粒徑大小並無明顯的增減,而粒子與粒子間的分散性亦相當良好,顯示出這樣的水溶性奈米粒子,非常適合於生物系統上的應用。最後我們將晶體表面上的生肽分子,利用生物連接試劑與抗體作進一步的結合,並將此標定有半導體奈米粒子的抗體進行螢光免疫檢測,實驗結果證實了該半導體奈米粒子對抗體活性並無明顯的影響,因此這樣的奈米粒子-抗體連結方式,可被期望作為一種生物檢測、標定的有效工具之一。

    We utilized the peptide molecules capping ZnS crystal surface to exchange the organic ligand onto CdSe/ZnS core-shell nanoparticle, that resulted in highly fluorescent, water-soluble one. Various sizes of particles via surface functional group exchange could retain their original morphology and optical property such as uv-vis absorption, and fluorescent. To covalently attach the peptide-capped nanoparticles to biological macromolecules, we used cross-linker reagent coupling the nanoparticles and antibodys. The particles-labeled antibodys were employed in fluoroimmunoassays, and the result demonstrated that the particle-antibody conjugation would not affect the activity of protein. These peptide-capped nanoparticles promise to be a versatile tool for probing of biological systems and biolabeling.

    目錄 目錄…………………………………………………………I 中文摘要……………………………………………………IV 英文摘要……………………………………………………V 第一章 緒論………………………………………………1 1-1奈米材料的世界…………………………………………………1 1-2量子限量化效應…………………………………………………2 1-3直遷能隙與非直遷能隙…………………………………………6 1-4奈米粒子的合成…………………………………………………8 1-5奈米粒子在生物系統上的應用…………………………………9 1-6水溶性奈米粒子合成……………………………………………11 1-7奈米-生物的複合材料……………………………………………13 第二章 實驗………………………………………………15 2-1研究動機…………………………………………………………15 2-2胜肽分子的合成…………………………………………………16 2-3水溶性奈米粒子的合成…………………………………………21 2-4酸鹼值及離子強度滴定…………………………………………23 2-5奈米粒子-抗體連結物合成……………………………………24 2-6免疫螢光分析……………………………………………………26 第三章 實驗結果與討論…………………………………30 3-1胜肽分子的合成與鑑定…………………………………………30 圖3-1 胜肽A質譜鑑定與結構…………………………………32 圖3-2 胜肽B質譜鑑定與結構…………………………………33 圖3-3 胜肽C質譜鑑定與結構…………………………………34 3-2 水溶性奈米粒子的光學性質……………………………………35 圖3-4 奈米粒子表面官能基置換示意圖………………………39 圖3-5 粒徑較大奈米粒子,UV-VIS吸收光譜與螢光光譜……40 圖3-6 粒徑較小奈米粒子,UV-VIS吸收光譜與螢光光譜……41 圖3-7 水溶性奈米粒子螢光強度與時間週期關係圖……………42 圖3-8 不同胜肽序列合成水溶性奈米粒子UV-VIS光譜圖……43 3-3 酸鹼值及離子強度的影響………………………………………44 圖3-9 不同pH值下,奈米粒子的UV-VIS吸收光譜圖…………46 圖3-10 水溶性奈米粒子螢光強度與離子強度關係圖…………47 3-4 奈米粒子-抗體之連結……………………………………………48 圖3-11奈米粒子-抗體連結物示意圖……………………………51 圖3-12螢光免疫分析示意圖……………………………………52 圖3-13 螢光值為595nm的螢光免疫分析結果…………………53 圖3-14 螢光值為549nm的螢光免疫分析結果…………………54 圖3-15 奈米粒子-抗體連接物與Avidin競爭反應結果………55 第四章 結論………………………………………………56 參考文獻……………………………………………………58

    參考文獻

    1.(a) Vossmeyer, T.; Katsikas, L.; Giersig, M.; Popovic, I. G.; Weller, H. J. Phys. Chem. 1994, 98, 7665. (b)Goldstein, A. N.; Echer, C. M.; Alivisatos, A. P. Science 1992, 256, 1425.
    2.Brus, L. E. J. Phys. Chem 1994, 98, 3575.
    3.Kalyanasundaram, K.; Borgarello, E.; Duonghong, D.; Gratzel, M. Angew. Chem. Int. Ed. Engl. 1981, 20, 987.
    4.(a) Chen, C. C.; Lin, J. J. Adv Mater. 2001, 13, 136. (b)Chen, C. C.; Yeh, C. C.; Chen, C. H.; Yu, M. Y.; Liu, H. L.; Wu, J. J.; Chen, K. H.; Chen, L. C.; Peng, J. Y.; Chen, Y. F. J. Am. Chem. Soc. 2001, 123, 2791. (c)Chen, C. C.; Yeh, C. C. Adv. Mater. 2002, 12(10), 738-741. (d) Chen, C. C.; Yeh, C. C.; Liang, C. H.; Chen, C. H.; Yu, M. Y.; Liu, H. L.; Lin, Y. S.; Ma, K. J.; Chen, K. H. J. Phys. Chem. Sol. 2001, 62, 1577.
    5. Jana, N. R.; Gearheart, L.; Murphy, C. J. J. Phys. Chem. B. 2001, 105(19), 4065-4067. (b) Kim, F.; Song, J. H.; Yang, P. J. Am. Chem. Soc. 2002, 124(48), 14316-14317. (c) Nikoobakht, B.; Wang, Z. L.; El-Sayed, M. A. J. Phys. Chem. B. 2000, 104(36), 8635-8640.
    6.(a) Sun, X. C.; Nava, N. Nano Lett. 2002, 2(7), 765-769. (b) Yang, B.; Wu, Y.; Zong, B.; Shen, Z. Nano Lett. 2002, 2(7), 751-754. (c) Vestal, C. R.; Zhang, Z. J. Chem. Mater. 2002, 14(9), 3817-3822.
    7.Tanaka, H.; Mitsuishi, M.; Miyashita, T. Langmuir 2003, 19(8), 3103-3105.
    8.Janos H. Fendler Nanoparticle and nanostructured films, WILEY-VCH.
    9.(a) Kan, S.; Mokari, T.; Rothenberg, E.; Banin, U. Nature Materials 2003, 3, 155-158. (b)???
    10.Dabbousi, B. O.; Rodriguez-Viejo, J.; Mikulec, F. V.; Heine, J. R.; Mattoussi, H.; Ober, R.; Jensen, K. F.; Bawendi, M. G. J. Phys. Chem.B 1997, 101, 9463.
    11.(a) Alivisatos, A. P. Science 1996, 271, 933. (b) Wang, Y.; Herron, N. J. Phys. Chem. 1991, 95, 525. (c) Yosuke Kayanuma Phys. Rev. B 1988, 38, 9797.
    12.(a) Alivisatos, A. P. Science 1996, 271, 933. (b)Chen, C. C.; Herhold, A. B.; Johnson, C. S.; Alivisatos, A. P. Science 1997, 276, 398.
    13.物化課本
    14.(a) Li, L. S.; Hu, J.; Yang, W.; Alivisatos, A. P. Nano. Lett. 2001, 1, 349. (b) Peng, X.; Manna, L.; Yang, W.; Wickham, J.; Scher, E.; Kadavanich, A.; Alivisatos, A. P. Nature 2000, 404, 59.
    15.IIJIMA, S. Nature 1991, 354, 56.
    16.(a) Murray, C. B.; Norris, D. J.; Bawendi, M. G. J. Am. Chem. Soc. 1993, 115, 8706. (b) Petit, C.; Pileni, M. P. J. Phys. Chem. 1988, 92, 2282. (c) Kortan, A. R.; Hull, R.; Opila, R. L.; Bawendi, M. G.; Steigerwald, M. L.; Carroll, P. J.; Brus, L. E. J. Am. Chem. Soc. 1990, 112, 1327. (d) Steigerwald, M. L.; Alivisatos, A. P.; Gibson, J. M.; Harris, T. D.; Kortan, R.; Muller, A. J.; Brus, L. E. J. Phys. Chem. 1988, 110, 3046.
    17.Chen, C. C.; Chao, C. Y.; Lang, Z. H. Chem. Mater. 2000, 12, 1516.
    18.Yu, Y. Y.; Chang, S. S.; Lee, C. L.; Wang, C. R. C. J. Phys. Chem. B 1997, 101, 6661.
    19.(a) Akerman, M. E.; Chan, W. C. W.; Laakkonen, P.; Bhatia, S. N.; Ruoslahti, E. Proc. Natl Acad. Sci. USA 2002, 99, 12617.(b) Dubertret, B.; Skourides, P.; Norris, D. J.; Noireaux, V.; Brivanlou, A. H.; Libchaber, A. Science 2002, 298, 1759. (c) Jaiswal, J. K.; Mattoussi, H.; Mauro, J. M.; Simon, S. M. Nature Biotechnology 2003, 21, 47.
    20.(a) Bruchez, M.; Moronne, M.; Gin, P.; Weiss, S.; Alivisatos, A. P. Science 1998, 281, 2013. (b) Chan, W. C. W.; Nie, S. Science 1998, 281, 2016.
    21.Chan, W. C. W.; Maxwell, D. J.; Gao, X.; Bailey, R. E.; Han, M.; Nie, S. Current Opinion in Biotechnology 2002, 13, 40.
    22.(a) Goldman, E. R.; Balighian, E. D.; Mattoussi, H.; Kuno, M. K.; Mauro, J. M.; Tran, P. T.; Anderson, G. P. J. Am. Chem. Soc. 2002, 124, 6378. (b) Goldman, E. R.; Anderson, G. P.; Tran, P. T.; Mattoussi, H.; Charles, P. T.; Mauro, J. M. Anal. Chem. 2002, 74, 841.
    23.(a) Pathak, S.; Choi, S. K.; Arnheim, N.; Thompson, M. E. J. Am. Chem. Soc. 2001, 123, 4103.(b) Mitchell, G. P.; Mirkin, C. A.; Letsinger, R. L. J. Am. Chem. Soc. 1999, 121, 8122.(c) Willard, D. M.;Carillo, L. L.; Jung, J.; Orden, A. V.; Nano. Lett. 2001, 1, 469.
    24.Aldana, J.; Wang, Y. A.; Peng, X. J. Am. Chem. Soc. 2001, 123, 8844.
    25.(a) Meldrum, F. C.; Mann, S.; Heywood, B. R.; Frankel, R. B.; Bazylinski, D. A. Proc. R. Soc. Lond. B 1993, 251, 238. (b) Cha, J. N. Proc. Natl Acad. Sci. USA 1999, 96, 361.
    26.(a) Brown, S. Proc. Natl Acad. Sci. USA 1992, 89, 8651. (b) Brown, S. Nature Biotechnol. 1997, 15, 269.
    27.(a) Whaley, S. R.; English, D. S.; Hu, E. L.; Barbara, P. F.; Belcher, A. M. Nature 2000, 405, 665. (b) Lee, S. W.; Mao, C.; Flynn, C. E.; Belcher, A. M. Science 2002, 296, 892.
    28.
    29. Spanhel, L.; Haase, M.; Weller, H.; Hanglein, A. J. Am. Chem. Soc. 1987, 109, 5644.

    下載圖示
    QR CODE