簡易檢索 / 詳目顯示

研究生: 歐陽淳宇
Ou-Yang, Chun-Yu
論文名稱: 開發新的蛋白質分泌攜帶者以合成金屬奈米粒子
Discovery of New Carriers in Protein Secretion for Applications in Biosynthesizing Metal Nanoparticles
指導教授: 葉怡均
Yeh, Yi-Chun
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 55
中文關鍵詞: 蛋白質分泌高滲透壓誘發蛋白重金屬運輸蛋白耐金屬貪銅菌奈米粒子酵素免疫分析法
英文關鍵詞: protein secretion, OsmY, CupC, Cupriavidus metallidurans, nanoparticles, ELISA
論文種類: 學術論文
相關次數: 點閱:103下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 利用微生物表現異源蛋白質往往遭遇到純化上的困難,意即:費時的細胞裂解及伴隨可能的內源毒素、蛋白質裂解酶的汙染。為了解決這個問題,蛋白質分泌是目前仍在研究的課題。利用重組蛋白,在目標基因的上游置入「蛋白質分泌攜帶者」,伴隨其本身能被攜帶至膜間質或細胞體外的特性,成功將目標蛋白質於細胞外表現,即可免於上述缺點。至今,仍沒有準則來提升分泌的效率。本研究旨於開發新的分泌攜帶者並利用此技術來合成多樣的金屬奈米粒子以彰顯其應用性。除了常用的高滲透壓誘發蛋白 (OsmY),我們也透過資料庫在耐金屬貪銅菌 (Cupriavidus metallidurans) 上發現另外兩個相似的蛋白質。其中,Rmet_3428是有活性的。經由紅色螢光蛋白的分泌以及西方墨點法,我們確認了目標蛋白質可以被表現在培養液當中。接著,我們利用被分泌的金屬硫蛋白 (Metallothioneins) 及重金屬運輸蛋白 (CupC) 在細胞體外合成金屬奈米粒子。透過不同的光譜及顯微術,材料鑑定則強化了合成的證據。為了和化學合成 (檸檬酸還原法) 的金奈米粒子比較,我們進行之前報導過的酵素免疫分析法。由於奈米材料的高表面積/體積比,每顆金奈米粒子可容納許多抗體。相較於傳統的方法,訊號可大幅提升。我們在g/mL的數量級觀察到奈米粒子對訊號的增強,甚至在0.16至4.33 g/mL的範圍呈現線性相關。本研究跨足材料合成及生醫分析,為蛋白質分泌領域開創一個新的可能。

    Heterologous expression of recombinant proteins in microbial hosts, especially Escherichia coli, is fundamental in synthetic biology. However, in terms of protein purification, producing proteins in cytoplasm has drawbacks such as laborious cell lysis and contamination throughout the process. Protein secretion is another strategy to bypass: proteins are harvested in extracellular space without destroying the expression host, and the prolonged lifetime would meet the needs in industrial aspect. Practically, ones fuse desired targets with secretory carriers. In this study, we used the well-characterized carrier, OsmY, and newly discovered protein homologs in Cupriavidus metallidurans based on bioinformatics search in NCBI database. RFP secretion and immunodetection of protein tags were used to validate the scenario of protein secretion. Then, we used metallothioneins (MT) from Pseudomonas putida and truncated form of CupC from Cupriavidus metallidurans, which are both metal-binding proteins, to synthesize various metal nanoparticles in vitro. Characterization of synthesized materials were carried out to determine the composition, chemical state and particle size distribution through imaging or spectroscopy. Furthermore, antibodies with HRP conjugate were attached to gold nanoparticles to test enhancement in enzyme-linked immunoassay (ELISA). High surface-to-volume ratio of nanomaterials carried more antibodies and thus enhanced signal of ELISA. We had found that direct coating of antigen in indirect ELISA could quantify proteins ranging from 0.16 to 4.33 g/mL.

    Acknowledgement i 中文摘要 ii Abstract iii Table of Contents iv List of Figures vi List of Tables xi Chapter 1 Introduction 1 1.1 Protein trafficking 1 1.2 Bacterial secretion system 2 1.2.1 Type I 2 1.2.2 Structure of signal sequence 3 1.2.3 Type II 4 1.3 Strategies of secretory carrier proteins 7 1.3.1 Proteome-based search 7 1.3.2 OsmY and its structure 10 1.3.3 Other targets for secretion 11 1.4 Synthesis of metal nanoparticles and characterization 12 1.4.1 Protein-based synthesis 12 1.4.2 Energy-dispersive X-ray spectroscopy (EDS) 14 1.4.3 X-ray photoelectron spectroscopy (XPS) 16 1.5 Nanoparticle-incorporated ELISA 17 1.6 Purpose of this study 19 1.6.1 Search for hypothetical proteins 19 1.6.2 Design of the experiment 20 Chapter 2 Materials and Methods 21 2.1 Materials and Instruments 21 2.2 Construction and cloning 21 2.3 Bacterial strains and growth conditions 24 2.4 RFP characterization 26 2.5 SDS-PAGE and Western Blot 26 2.6 Preparation of supernatants 27 2.7 Biosynthesis and characterization of metal nanoparticles (NPs) 27 2.8 UV-Vis spectroscopy 28 2.9 Protein purification and quantitation 28 2.10 Indirect and Sandwich ELISA 29 2.10.1 General procedure 29 2.10.2 Synthesis of AuNP-Ab-HRP complex 30 Chapter 3 Results 31 3.1 RFP characterization 31 3.2 Immunodetection of secreted MT/CupC(s) 33 3.3 Synthesis of diverse metal nanoparticles (NPs) 36 3.3.1 TEM analysis 36 3.3.2 Size control of AuNPs 40 3.3.3 UV/Vis spectroscopy 41 3.3.4 Elemental and oxidation state analysis 42 3.3.5 Investigating crystallinity by HR-TEM 44 3.4 AuNP-enhanced ELISA 45 Chapter 4 Discussion 47 4.1 Mechanism of secretion by OsmY 47 4.2 Surroundings of observed AgNPs 48 4.3 Misleading result in XPS? 50 Conclusion 52 References 53 Appendix A Strains, Plasmids and Primers A-1 Appendix B SEM Images and EDS Spectra B-1 Appendix C Codon usage bias C-1

    1. Pugsley, A. P., The complete general secretory pathway in gram-negative bacteria. Microbiological Reviews 1993, 57 (1), 50-108.
    2. Tseng, T. T.; Tyler, B. M.; Setubal, J. C., Protein secretion systems in bacterial-host associations, and their description in the Gene Ontology. BMC Microbiol 2009, 9 Suppl 1, S2.
    3. Mergulhão, F. J. M.; Summers, D. K.; Monteiro, G. A., Recombinant protein secretion in Escherichia coli. Biotechnology Advances 2005, 23 (3), 177-202.
    4. Choi, J. H.; Lee, S. Y., Secretory and extracellular production of recombinant proteins using Escherichia coli. Applied Microbiology and Biotechnology 2004, 64 (5), 625-635.
    5. Yang, J.; Moyana, T.; MacKenzie, S.; Xia, Q.; Xiang, J., One Hundred Seventy-Fold Increase in Excretion of an FV Fragment-Tumor Necrosis Factor Alpha Fusion Protein (sFV/TNF-α) fromEscherichia coli Caused by the Synergistic Effects of Glycine and Triton X-100. Applied and Environmental Microbiology 1998, 64 (8), 2869-2874.
    6. Qian, Z.-G.; Xia, X.-X.; Choi, J. H.; Lee, S. Y., Proteome-based identification of fusion partner for high-level extracellular production of recombinant proteins in Escherichia coli. Biotechnology and Bioengineering 2008, 101 (3), 587-601.
    7. Yim, H. H.; Villarejo, M., osmY, a new hyperosmotically inducible gene, encodes a periplasmic protein in Escherichia coli. Journal of Bacteriology 1992, 174 (11), 3637-3644.
    8. Petersen, T. N.; Brunak, S.; von Heijne, G.; Nielsen, H., SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Meth 2011, 8 (10), 785-786.
    9. Yeats, C.; Bateman, A., The BON domain: a putative membrane-binding domain. Trends in Biochemical Sciences 2003, 28 (7), 352-355.
    10. Cheng, C.-M.; Tzou, S.-C.; Zhuang, Y.-H.; Huang, C.-C.; Kao, C.-H.; Liao, K.-W.; Cheng, T.-C.; Chuang, C.-H.; Hsieh, Y.-C.; Tai, M.-H.; Cheng, T.-L., Functional Production of a Soluble and Secreted Single-Chain Antibody by a Bacterial Secretion System. PLoS ONE 2014, 9 (5), e97367.
    11. Gupta, S.; Adlakha, N.; Yazdani, S. S., Efficient extracellular secretion of an endoglucanase and a β-glucosidase in E. coli. Protein Expression and Purification 2013, 88 (1), 20-25.
    12. Klaassen, C. D.; Liu, J.; Choudhuri, S., METALLOTHIONEIN: An Intracellular Protein to Protect Against Cadmium Toxicity. Annual Review of Pharmacology and Toxicology 1999, 39 (1), 267-294.
    13. Park, T. J.; Lee, S. Y.; Heo, N. S.; Seo, T. S., In vivo synthesis of diverse metal nanoparticles by recombinant Escherichia coli. Angew Chem Int Ed Engl 2010, 49 (39), 7019-24.
    14. Jian, X.; Wasinger, E. C.; Lockard, J. V.; Chen, L. X.; He, C., Highly Sensitive and Selective Gold(I) Recognition by a Metalloregulator in Ralstonia metallidurans. Journal of the American Chemical Society 2009, 131 (31), 10869-10871.
    15. Fahlman, B., Materials Characterization. In Materials Chemistry, Springer Netherlands: 2011; pp 585-667.
    16. Zhan, L.; Wu, W. B.; Yang, X. X.; Huang, C. Z., Gold nanoparticle-based enhanced ELISA for respiratory syncytial virus. New Journal of Chemistry 2014, 38 (7), 2935.
    17. Okonechnikov, K.; Golosova, O.; Fursov, M.; team, t. U., Unipro UGENE: a unified bioinformatics toolkit. Bioinformatics 2012, 28 (8), 1166-1167.
    18. Larkin, M. A.; Blackshields, G.; Brown, N. P.; Chenna, R.; McGettigan, P. A.; McWilliam, H.; Valentin, F.; Wallace, I. M.; Wilm, A.; Lopez, R.; Thompson, J. D.; Gibson, T. J.; Higgins, D. G., Clustal W and Clustal X version 2.0. Bioinformatics 2007, 23 (21), 2947-2948.
    19. Waterhouse, A. M.; Procter, J. B.; Martin, D. M. A.; Clamp, M.; Barton, G. J., Jalview Version 2—a multiple sequence alignment editor and analysis workbench. Bioinformatics 2009, 25 (9), 1189-1191.
    20. Kovach, M. E.; Elzer, P. H.; Steven Hill, D.; Robertson, G. T.; Farris, M. A.; Roop Ii, R. M.; Peterson, K. M., Four new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying different antibiotic-resistance cassettes. Gene 1995, 166 (1), 175-176.
    21. Liu, X.; Atwater, M.; Wang, J.; Huo, Q., Extinction coefficient of gold nanoparticles with different sizes and different capping ligands. Colloids Surf B Biointerfaces 2007, 58 (1), 3-7.
    22. Chen, R.; Wu, J.; Li, H.; Cheng, G.; Lu, Z.; Che, C.-M., Fabrication of gold nanoparticles with different morphologies in HEPES buffer. Rare Metals 2010, 29 (2), 180-186.
    23. Teriete, P.; Yao, Y.; Kolodzik, A.; Yu, J.; Song, H.; Niederweis, M.; Marassi, F. M., Mycobacterium tuberculosis Rv0899 adopts a mixed alpha/beta-structure and does not form a transmembrane beta-barrel. Biochemistry 2010, 49 (13), 2768-77.
    24. Holm, L.; Rosenström, P., Dali server: conservation mapping in 3D. Nucleic Acids Research 2010, 38 (suppl 2), W545-W549.
    25. Wang, A.-J.; Lv, J.-J.; Zhou, D.-L.; Weng, X.; Qin, S.-F.; Feng, J.-J., Facile synthesis of ultrathin worm-like Au nanowires for highly active SERS substrates. New Journal of Chemistry 2014, 38 (8), 3395-3400.
    26. Fong, Y.-Y.; Visser, B. R.; Gascooke, J. R.; Cowie, B. C. C.; Thomsen, L.; Metha, G. F.; Buntine, M. A.; Harris, H. H., Photoreduction Kinetics of Sodium Tetrachloroaurate under Synchrotron Soft X-ray Exposure. Langmuir 2011, 27 (13), 8099-8104.
    27. Karadas, F.; Ertas, G.; Ozkaraoglu, E.; Suzer, S., X-ray-Induced Production of Gold Nanoparticles on a SiO2/Si System and in a Poly(methyl methacrylate) Matrix. Langmuir 2005, 21 (1), 437-442.
    28. Grote, A.; Hiller, K.; Scheer, M.; Münch, R.; Nörtemann, B.; Hempel, D. C.; Jahn, D., JCat: a novel tool to adapt codon usage of a target gene to its potential expression host. Nucleic Acids Research 2005, 33 (suppl 2), W526-W531.
    29. Sharp, P. M.; Li, W.-H., The codon adaptation index-a measure of directional synonymous codon usage bias, and its potential applications. Nucleic Acids Research 1987, 15 (3), 1281-1295.

    下載圖示
    QR CODE