簡易檢索 / 詳目顯示

研究生: 魏煒倫
Wei, Wei-Lon
論文名稱: 脈衝雷射蒸鍍法製備氧化銪鋅薄膜之探討: 結構、光學、電性與磁性研究
Study of Europium-doped ZnO Thin Films Grown by Pulsed-Laser Deposition: Structural, Optical, Electrical, and Magnetic Properties
指導教授: 駱芳鈺
Lo, Fang-Yuh
口試委員: 趙宇強
Chao, Yu-Chiang
林碧軒
Lin, Bi-Hsuan
駱芳鈺
Lo, Fang-Yuh
口試日期: 2022/12/29
學位類別: 碩士
Master
系所名稱: 物理學系
Department of Physics
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 63
中文關鍵詞: 自旋電子學稀磁性半導體脈衝雷射蒸鍍法氧化鋅Dieke diagram磁光效應霍爾效應范德堡法順磁性
英文關鍵詞: Spintronics, diluted magnetic semicondutor, pulsed-laser deposition, zinc oxide, europium, Dieke diagram, magneto-optical effect, magneto-optical effect, Hall effect, van der Pauw method, paramagnetism
研究方法: 實驗設計法現象學紮根理論法主題分析觀察研究現象分析
DOI URL: http://doi.org/10.6345/NTNU202300314
論文種類: 學術論文
相關次數: 點閱:87下載:29
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文利用脈衝雷射沉積法在c方向的單晶藍寶石基板上沉積氧化銪鋅(Eu:ZnO)薄膜,摻雜比例為0-4.0 at.%,薄膜厚度控制在150 nm,之後檢測薄膜樣品的結構、光學、電性以及磁性。
    X光繞射光譜中在角度2θ = 31°-45°,我們只觀測到ZnO以及基板的特徵峰,確認了Eu成功摻雜進ZnO且沒有雜晶相。c軸常數隨摻雜比例提升從在5.21 Å降至5.18 Å,推測與電荷補償機制有關(2Eu3+ → 3Zn2+ + VZn);晶粒尺寸與摻雜比例沒有明顯趨勢,晶粒尺寸在163-183 Å。
    光致螢光光譜的結果顯示Eu摻雜使得整體螢光強度下降、近能隙3.3 eV峰值訊號變寬,經分析後可推斷Eu:ZnO薄膜具有鋅間隙、鋅空缺、氧空缺、氧間隙等等的缺陷,隨著摻雜比例上升,缺陷和Eu 4f-4f軌域躍遷5D0-7F2逐漸主導螢光,當摻雜比例達到4.0 %時,可以觀察到5D0-7F1、5D0-7F0的螢光。
    在電性分析中,薄膜載子遷移率隨著摻雜比例上升從23 cm2/Vs降至0.1-1.0 cm2/Vs,推測與摻雜所產生的缺陷有關,缺陷變得更多、應力變大,形成更多的晶粒邊界使得電子容易被散射。在0、0.5、1.0 %摻雜比例的薄膜樣品,電阻率約在0.1 Ω⋅cm,載子濃度在1.0 %的薄膜樣品達到最大值32×10^18 cm-3,意味著少量摻雜可以改變、甚至促進薄膜電性,而當摻雜比例超過2.0 %時,電阻率急遽上升至1-10 Ω⋅cm、載子濃度則在3-5×10^18 cm-3。
    我們從磁光法拉第光譜觀察到薄膜樣品的法拉第旋轉角與外加磁場呈線性關係,並且薄膜的法拉第旋轉強度在近能隙的波長(340、350 nm)會有較強的響應,並且有Eu摻雜的樣品比無摻雜樣品具有更強的旋轉角強度,歸因於Eu摻雜帶來額外電子,達到增幅磁光效應的效果。
    磁性分析中,所有薄膜樣品在室溫下呈現順磁性,樣品磁矩在外加磁場達到1500 Oe後皆達到飽和。飽和磁化強度隨著摻雜比例上升有趨近飽和的趨勢,從7 emu/cm-3增加到13.7 emu/cm-3。

    In this thesis, we utilized pulsed-laser deposition (PLD) to deposit europium-doped zinc oxide (Eu:ZnO) thin films on c-oriented sapphire substrate with Eu concentration ranging from 0 to 4.0 at.%. Thin film thickness had been controlled around 150 nm, and the structural, optical, electrical and magnetic properties of Eu:ZnO thin film samples were investigated.
    X-ray diffraction spectra showed only ZnO(002) and substrate characteristics without any secondary phases within scan range 2θ = 31°-45°, indicating successful incorporation of Eu ions into ZnO. The c-axis lattice constant dropped from 5.21 Å to 5.18 Å with increasing dopant concentration, which might be related to charge compensation mechanism (2Eu3+ → 3Zn2+ + VZn). The crystallite size was around 163-183 Å and showed no obvious trend with dopant concentration.
    Photoluminescence (PL) spectra showed that Eu incorporation caused decreased overall PL intensity, and near band edge (NBE) luminescence around 3.3 eV became weaker and wider. Defects such as zinc interstitial, zinc vacancy, oxygen vacancy and oxygen interstitial had been detected. With increasing Eu dopant concentration, PL from defects and Eu 4f-intraband transition 5D0-7F2 gradually dominated PL spectra. When the dopant concentration went up to 4.0 %, 5D0-7F1, 5D0-7F0 had also been detected.
    In the analysis of electrical properties, with increasing dopant concentration, carrier mobility decreased from 23 cm2/Vs to 0.1-1.0 cm2/Vs. This might bedue to more electrons scattering at increased grain boundary. The resistivity was around 0.1 Ω⋅cm in 0, 0.5, 1.0 % thin samples, and the carrier density reached maximum 32×10^18 cm-3 at 1.0 % concentration. This meant that dilute doping was able to change, even improve, electrical properties of the thin film. When dopant concentration went beyond 2.0 %, the resistivity rapidly increased to 1-10 Ω⋅cm, and the carrier density was around 3-5×10^18 cm-3.
    In the analysis of magneto-optical Faraday effect, for all thin film samples, Faraday rotation angle showed linear relation with external magnetic field, and the rotation strength became much stronger at wavelengths around 340-350 nm.
    Eu-doped samples showed stronger rotation response than those of un-doped sample, this effect could be attributed to additional electrons brought by Eu incorporation, thus amplifying magneto-optical effect.
    In the analysis of magnetism, all thin film samples showed paramagnetism at room temperature, and sample magnetic moments saturated at the magnetic field of 1500 Oe. The saturated magnetization showed asymptotic trend with dopant concentration, increased from 7 emu/cm3 to 13.7 emu/cm3.

    Chapter 1 緒論 1 Chapter 2 背景原理 4 2-1 氧化鋅(ZnO)、銪(Eu)與藍寶石基板(Sapphire)之特性 4 2-2 脈衝雷射沉積法 (Pulsed Laser Deposition, PLD) 7 2-3 表面輪廓儀 (Profilometer) 9 2-4 X光繞射 (X-ray Diffraction, XRD) 10 2-5 光致螢光 (Photoluminescence, PL) 14 2-6 磁光法拉第效應 (Magneto-optical Faraday effect, MOFE) 18 2-7 電性量測 (Electrical properties measurement) 21 2-8 材料磁性簡介 24 2-9 振動樣品磁力儀 (Vibrating sample magnetometer, VSM) 26 Chapter 3 樣品製備 27 Chapter 4 結果分析與討論 30 4-1 不同摻雜比例之氧化銪鋅薄膜沉積速率分析: 30 4-2 X光繞射分析晶體結構 32 4-3 光致螢光分析能階結構 34 4-4 霍爾效應以及范德堡法分析薄膜樣品電性 38 4-5 MOFE分析薄膜樣品磁光特性 41 4-6 VSM分析薄膜樣品磁性 44 Chapter 5 結論與未來展望 46 參考文獻 48 附錄 50 A-PL分析: 50 B-電性分析: 53 C-MOFE分析: 60

    [1] S.M. Yakout, J Supercond Nov Magn 33, 2557 (2020).

    [2] J.A. Gaj, Comprehensive Semiconductor Science and Technology 2, 95 (2011).

    [3] T. Dietl, H. Ohno, F. Matsukura, J.Cibert, and D.Ferrand, Science 287, 1019 (2000).

    [4] Y. Matsumoto, R. Takahashi, M. Murakami, T. Koida, X.J Fan, T.Hasegawa, T.Fukumura, M.Kawasaki, S.Y Koshihara, and H.Koinuma, Jpn.J.Appl.Phys. 40, 1204 (2001).

    [5] 黃文澤, 脈衝雷射蒸鍍法製備氧化銪鋅薄膜之探討: 結構、光學與磁性研究, 中華民國105年7月

    [6] M.Opel, Sebastian T.B. Goennenwein, M. Althammer, K. Nielsen, E. Karrer-Muller, S. Bauer, K. Senn, C. Schwark, C. Weier, G. Guntherodt, B. Beschoten, and R. Gross, Phys. Status Solidi B 251, 1700 (2014).

    [7] Arnold S. Borukhovich, and Alexey V. Troshin. Europium Monoxide (2018).

    [8] Ümit Özgür, Vitaliy Avrutin, and Hadis Morkoç, Molecular Beam Epitaxy 2018 Chapter 16,
    345 (2018)
    [9] About Sapphire. (n.d.)., from https://www.sapphire.lt/sapphire/

    [10] Sapphire Glass Products Manufacturer: Sapphire Products: Architectural & Molded Glass | Rayotek Scientific Inc., n.d.

    [11] Pulsed Laser Deposition (PLD) | A PVD Method. (2022, October 8). VacCoat. https://vaccoat.com/blog/pulsed-laser-deposition-pld/

    [12] Microfigure Measuring Instrument|Precision Measuring Instruments|Kosaka Laboratory Ltd. (n.d.). 株式会社小坂研究所

    [13] Linear Variable Displacement Transducer (LVDT). https://instrumentationandcontrollers.blogspot.com/2010/05/linear-variable-displacement-transducer.html

    [14] Robert Eisberg, and Robert Resnick, Quantum Physics of Atoms, Molecules, Solids, Nuclei, and Particles, 2nd Edition (1985).

    [15] Charles Kittel, Introduction to Solid State Physics, 8th edition (2005).

    [16] 謝嘉民, 賴一凡, 林永昌, 枋志堯, 科儀新知第二十六卷第六期94.6

    [17] Donald A. Neamen, Semiconductor Physics And Devices, 4th edition (2011).

    [18] Anderson Janotti, and Chris G. Van de Walle, Phys. Rev. B 76, 165202 (2007).

    [19] Sesha Vempati, Joy Mitra, and Paul Dawson, Nanosale Res Lett 7, 470 (2012).

    [20] M. Willander, O. Nur, J. R. Sadaf, M. I. Qadir, S. Zaman, A. Zainelabdin, N. Bano, and I. Hussain, Materials 3, 2643 (2010).

    [21] K. Binnemans, Coord. Chem. Rev. 295, 1 (2015).

    [22] Baldassare Bartolo, Ottavio Forte, Advances in Spectroscopy for Lasers and Sensing, 403 (2006).

    [23] Europium (Eu) from https://www.chemicalaid.com/element.php?symbol=Eu.

    [24] Taskeya Haider, Int. J. Appl. Electromagn 7, 17 (2017).

    [25] P. R. Berman, Am. J. Phys. 78, 270 (2010).

    [26] P.S. Hauge, F.H. Dill, IBM J Res Dev 17, 472 (1973).

    [27] Gerald Dennis Mahan, Applied Mathematics (2002).

    [28] Daniel M. Boerger, John J. Kramer, and Larry D. Partain, J. Appl. Phys. 52, 269 (1981).

    [29] 張鄴壬, 釤釔鐵石榴石薄膜的磁異向性研究, 中華民國111年7月

    [30] O. M. Ntwaeaborwa, S. J. Mofokeng, V. Kumar, Robin E. Kroon, O.M. Ntwaeaborwa, Spectrochim. Acta A 182, 42–49 (2017).

    [31] M. Novotný, M.Vondráček, E. Marešová, P.Fitla, J. Bulíř, P.Pokorný, Š.Havlová, N.Abdellaoui, A.Pereira, P. Hubík, J.More-Chevalier, and J.Lančok, Appl. Surf. Sci. 476, 271 (2019).

    [32] Mohamed El Jouad, El Mehdi Bouabdalli, S. Touhtouh, Mohammed Addou, N. Ollier, and Bouchta Sahraoui, Eur. Phys. J. Appl. Phys. 91, 10501 (2020).

    [33] Patrícia M.dos Reis, Adriana S.de Oliveira, Edison Pecoraro, Sidney J.L.Ribeiro, Marcio S.Góes, Clebio S.Nascimento, Rogéria R.Gonçalves, Daniela P.dos SantosaMarco A.Schiavon, and Jefferson L.Ferrari, J. Lumin. 167, 197 (2015).

    [34] E. Hasabeldaim, O.M. Ntwaeaborwa, R.E. Kroon, and H.C. Swart, J. Mol. Struct. 1192, 105 (2019).

    [35] W. Badalawa, Hiroaki Matsui, Takamasa Osone, Noriyuki Hasuike, Hiroshi Harima, and Hitoshi Tabata, J. Appl. Phys. 109, 053502 (2011).

    下載圖示
    QR CODE