簡易檢索 / 詳目顯示

研究生: 德思曼
Gulo, Desman Perdamaian
論文名稱: 石墨,MoTe2,及PtSe2材料之光譜性質研究
Optical studies of three- and two-dimensional materials in graphite, MoTe2, and PtSe2
指導教授: 劉祥麟
Liu, Hsiang-Lin
口試委員: 張明哲
Chang, Ming-Che
劉祥麟
Liu, Hsiang-Lin
張玉明
Chang, Yu-Ming
殳國俊
Shu, Guo-Jiun
Sankar, Raman
Sankar, Raman
口試日期: 2022/09/05
學位類別: 博士
Doctor
系所名稱: 物理學系
Department of Physics
論文出版年: 2022
畢業學年度: 111
語文別: 英文
論文頁數: 132
英文關鍵詞: Graphite, PtSe2, MoTe2, Optical properties
研究方法: 實驗設計法
DOI URL: http://doi.org/10.6345/NTNU202201789
論文種類: 學術論文
相關次數: 點閱:63下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Three-dimensional (3D) graphite, Na-doped graphite, MoTe2 single crystals, and two-dimensional (2D) PtSe2 thin films have received substantial research attention because of their intriguing physical and chemical properties and potential practical applications. Understanding the optical and vibrational properties in wide frequency and temperature ranges of these materials will benefit for technological development at different photon energies and temperatures. Spectroscopic ellipsometry is one of the non-destructively techniques that provide critical information on optical properties from various materials in bulk and thin-film forms. Furthermore, Raman scattering spectroscopy is a sensitive tool for exploring the lattice dynamics of novel materials. In this thesis, we investigated the electronic and vibrational excitations of graphite and Na-doped graphite single crystals, 2H- and 1T'-MoTe2 single crystals, and bilayer and multilayer PtSe2 thin films using spectroscopic ellipsometry and Raman scattering spectroscopy.

    At room temperature, the complex dielectric function of graphite exhibited broad spectra in the deep ultraviolet energy region. The Breit–Wigner–Fano (BWF) line shape analysis of the optical absorption spectrum demonstrated that two BWF line shapes were fitted with central energies at 4.85 ± 0.01 eV and 6.21 ± 0.03 eV. We assigned these two features as interference between an excitonic transition at the saddle point (M) in the band structures and collective excitations of the surface plasmons. Analysis of the temperature-dependent asymmetric BWF line shape indicated that the peak position redshifted, the linewidth narrowed, and the intensity enhanced under increasing temperatures. The temperature-dependent optical absorption for graphite is opposite to that of the interband absorptions observed in silicon. This behavior is associated with the asymmetric factor 1/q BWF which decreased under increasing temperatures. Combining with the first-principles calculations, we verified the presence of two resonant conditions in the deep ultraviolet energy region. The lifetime of surface plasmons was expected to decrease with increased temperatures, leading to a decrease of the 1/q BWF. Furthermore, the D mode was only observed with 785-nm laser excitation in graphite, which was associated with the disorder resulting from the double-resonance Raman scattering process.

    The room temperature optical absorption spectra confirmed that 2H-MoTe2 had an indirect band gap at 0.89 ± 0.01 eV, whereas 1T′-MoTe2 possessed semimetal behavior. Furthermore, 2H-MoTe2 exhibited three distinct intralayer A1s, A2s, and B1s excitons and one interlayer AIL exciton at 1.136 ± 0.002, 1.181 ± 0.001, 1.469 ± 0.006, and 1.209 ± 0.010 eV at 4.2 K. By contrast, 1T′-MoTe2 displayed two broad intralayer A1s and B1s excitons at 0.778 ± 0.002 and 1.447 ± 0.001 eV. The spin-orbit splitting energy of 2H- and 1T′-MoTe2 were 333 and 669 meV. Strikingly, the intralayer A1s exciton of 1T′-MoTe2 exhibited a blueshift, whereas its intralayer B1s exciton exhibited a redshift with an increase in temperature. The temperature-dependent properties of all optical transitions indicated strong electron-phonon interactions. Raman scattering measurement confirmed that the 𝐸2𝑔1 mode of 2H-MoTe2 is more prominent with laser excitations of 488 and 532 nm. By contrast, 1T′-MoTe2 revealed the dominated 3Ag mode using all laser excitation wavelengths.

    The room temperature refractive index spectra of PtSe2 thin films exhibited several anomalous dispersion features below 1000 nm and approached a constant value in the near-infrared frequency range. At a wavelength of 1200 nm, the thermo-optic coefficients of bilayer and multilayer PtSe2 were (4.31 ± 0.04) ☓ 10-4/K and (-9.20 ± 0.03) ☓ 10-4/K. The optical absorption spectra confirmed that bilayer PtSe2 had an indirect band gap of 0.75 ± 0.01 eV, whereas multilayer PtSe2 revealed semimetal behavior at room temperature. The suppression of electron-phonon interactions induced an increase in the band gap value of bilayer PtSe2 to 0.83 ± 0.01 eV at 4.5 K. Furthermore, the frequency shifts of Raman-active Eg and A1g phonon modes of both thin films in the temperature range between 10 and 500 K accorded with the predictions of the anharmonic model.

    We have studied the comprehensive optical and vibrational properties of graphite and MoTe2 single crystals, and PtSe2 thin films. These results not only offer important insight into the electronic and vibrational excitations and but also provide valuable information for technological development in optoelectronic and photonic devices of these materials.

    Acknowledgment i Abstract iii List of Figures vii List of Tables xiii Chapter 1 Introduction 1 Chapter 2 Overview of graphite and transition metal dichalcogenides 6 2.1 Graphite 6 2.1.1 Growth of graphite and graphite-doped single crystals 6 2.1.2 Physical properties 7 2.1.3 Optical properties 7 2.2 Molybdenum ditellurium (MoTe2) 15 2.2.1 Growth of MoTe2 single crystals 15 2.2.2 Physical properties 15 2.2.3 Optical properties 16 2.3 Platinum diselenide (PtSe2) 26 2.3.1 Growth of PtSe2 thin films 26 2.3.2 Physical properties 26 2.3.3 Optical properties 27 Chapter 3 Experimental techniques 35 3.1 Theory of light 35 3.2 Spectroscopic ellipsometry 40 3.3 Raman scattering spectroscopy 47 Chapter 4 Results and discussions 51 4.1 Optical properties of graphite and Na-doped single crystals 51 4.1.1 Electronic structures 51 4.1.2 Phononic properties 67 4.2 Optical studies of MoTe2 single crystals 70 4.2.1 Optical transitions 70 4.2.2 Vibrational properties 88 4.3 Optical studies of PtSe2 thin films 93 4.3.1 Electronic excitations 93 4.3.2 Lattice dynamics 108 Chapter 5 Summary 115 References 117

    M. Murakami, A. Tatami, and M. Tachibana. Fabrication of high quality and large area graphite thin films by pyrolysis and graphitization of polyimides, Carbon 145, 23 (2019).

    Q. Zheng, P. V. Braun, and D. G. Cahill. Thermal Conductivity of Graphite thin films grown by low temperature chemical vapor deposition on Ni (111), Adv. Mater. Interfaces 3, 1600234 (2016).

    Y. D. Fomin and V. V. Brazhkin. Comparative study of melting of graphite and graphene, Carbon 157, 767 (2020).

    R. Song, Q. Wang, B. Mao, Z. Wang, D. Tang, B. Zhang, J. Zhang, C. Liu, D. He, Z. Wu, and S. Mu. Flexible graphite films with high conductivity for radio-frequency antennas, Carbon 130, 164 (2018).

    Y. Xu, G. Zhao, L. Zhu, A. Fei, Z. Zhang, Z. Chen, F. An, Y. Chen, Y. Ling, P. Guo, S. Ding, G. Huang, P. Y. Chen, Q. Cao, and Z. Yan. Pencil-paper on-skin electronics, PNAS 117, 31 (2020).

    D. Y. Rahman, M. Rokhmat, E. Yuliza, E. Sustini, and M. Abdullah. New design of potentially low-cost solar cells using TiO2/graphite composite as photon absorber, Int. J. Energy Environ. Eng. 7, 289 (2016).

    T. Kondo, T. Suzuki, and J. Nakamura. Nitrogen doping of graphite for enhancement of durability of supported platinum clusters, J. Phys. Chem. Lett., 2, 577 (2011).

    A. Asghar, A. A. A. Raman, W. M. A. W. Daud, M. Ahmad, and S. U. B. Md Zain. Effect of nitrogen doping on graphite cathode for hydrogen peroxide production and power generation on MFC, Journal of the Taiwan Institute of Chemical Engineers 4, 016 (2017).

    M. N. E. A. Al Nasim and D. -M. Chun. Substrate-dependent deposition behavior of graphite particles dry-sprayed at room temperature using a nano-particle deposition system, Surf. Coat. Technol. 309, 172-178 (2017).

    Y. Li, J. Zhang, D. Huang, H. Sun, F. Fan, J. Feng, Z. Wang, and C. Z. Ning. Room-temperature continuous-wave lasing from monolayer molybdenum ditelluride integrated with a silicon nanobeam cavity, Nat. Nanotech. 12, 987 (2017).

    E. Wu, Y. Xie, B. Yuan, H. Zhang, X. Hu, J. Liu, and D. Zhang. Ultrasensitive and fully reversible NO2 gas sensing based on p type MoTe2 under ultraviolet illumination, ACS Sens. 3, 1719 (2018).

    X. Qian, J. Liu, L. Fu, and J. Li. Quantum spin Hall effect in two-dimensional transition metal dichalcogenides, Science 346, 1344 (2014).

    Y. Qi, P. G. Naumov, M. N. Ali, C. R. Rajamathi, W. Schnelle, O. Barkalov, M. Hanfland, S. C. Wu, C. Shekhar, Y. Sun, V. Sub, M. Scmidt, U. Schwarz, E. Pippel, P. Werner, R. Hillebrand, T. Forster, E. Kampert, S. Parkin, R. J. Cava, C. Felser, B. Yan, and S. A. Medvedev. Superconductivity in Weyl semimetal candidate MoTe2, Nat. Commun. 7, 11038 (2016).

    J. Yuan, H. Mu, L. Li, Y. Chen, W. Yu, K. Zhang, B. Sun, S. Lin, S. Li, and Q. Bao. Few-layer platinum diselenide as a new saturable absorber for ultrafast fiber lasers, ACS Appl. Mater. Interfaces, 10, 21534 (2018).

    S. Parhizkar, M. Prechtl, A. L. Giesecke, S. Suckow, S. Wahl, S. Lukas, O. Hartwig, N. N. Negm, A. Quellmalz, K. Gylfason, D. Schall, M. Wuttig, G. S. Duesberg, and M. C. Lemme. Two-dimensional platinum diselenide waveguide-integrated infrared photodetectors, ACS Photonics, 9, 859 (2022).

    D. D. L. Chung, Review: Graphite, J. Mater. Sci. 37, 1475 (2002).

    D. E. Soule and J. W. McClure. Band structure and transport properties of single-crystal graphite, J. Phys. Chem. Solids 55, 10253 (1959).

    M. Inoue. Landau levels and cyclotron resonance in graphite, J. Phys. Soc. Japan 17, 808 (1962).

    R. Ahuja, S. Auluck, J. M. Wills, M. Alouani, B. Johansson, and O. Eriksson. Optical properties of graphite from first-principles calculations, Phys. Rev. B. 55, 4999 (1997).

    A. G. Marinopoulos, L. Reining, A. Rubio, and V. Olevano. Ab initio study of the optical absorption and wave-vector-dependent dielectric response of graphite, Phys. Rev. B 69, 245419 (2004).

    E. Tosatti and F. Bassani. Optical constant of graphite, Nuovo Cimento. 65B, 161 (1970).

    S. Ergun, J. B. Yasinsky, and J. R. Townsend. Transverse and longitudinal optical properties of graphite, Carbon 5, 403 (1967).

    E. A. Taft and H. R. Phillipp. Optical properties of graphite, Phys. Rev. 138, A197 (1965).

    J. Daniels, C. V. Festenberg, H. Raether, and K. Zeppenfeld. Optical constants of solids by electron spectroscopy, 54, pp. 77-135 (Springer Tracts in Modern Physics, 1970)

    G. E. Jellison, J. D. Hunn, and H. N. Lee. Measurement of optical functions of highly oriented pyrolytic graphite in the visible, Phys. Rev. B 76, 085125 (2007).

    W. Li, G. Cheng, Y. Liang, B. Tian, X. Liang, L. Peng, A. R. W. Hight, D. J. Gundlach, and N. V. Nguyen. Broadband optical properties of graphene by spectroscopic ellipsometry, Carbon 99, 348 (2016).

    Y. Deng, X. Zhao, C. Zhu, P. Li, R. Duan, G. Liu, and Z. Liu. MoTe2: Semiconductor or semimetal?, ACS Nano, 15, 12465 (2021).

    I. G. Lezama, A. Ubaldini, M. Longobardi, E. Giannini, C. Renner, A. B. Kuzmenko, and A. F. Morpurgo. Surface transport and band gap structure of exfoliated 2H-MoTe2 crystals, 2D Mater. 1, 021002 (2014).

    J. H. Kim, M. R. Bergren, J. C. Park, S. Adhikari, M. Lorke, T. Frauenheim, D. H. Choe, B. Kim, H. Choi, T. Gregorkiewicz, and Y. H. Lee, Carrier multiplication in van der Waals layered transition metal dichalcogenides, Nat. Commun. 10, 5488 (2017).

    H. P. Hughes and R. H. Friend. Electrical resistivity anomaly in -MoTe2 (metallic behavior), J. Phys. C: Solid State Phys. 11, 1978 (1978).

    D. H. Keum, S. Cho, J. H. Kim, D. H. Choe, H. J. Sung, M. Kan, H. Kang, J. Y. Hwang, S. W. Kim, H. Yang, K. J. Chang, and Y. H. Lee. Bandgap opening in few-layered monoclinic MoTe2, Nat. Phys. 11, 482 (2015).

    P. Song, C. Hsu, M. Zhao, X. Zhao, T. R. Chang, J. Teng, H. Lin, and K. P. Loh. Few-layer 1T′-MoTe2 as gapless semimetal with thickness dependent carrier transport, 2D Mater. 5, 031010 (2018).

    Y. Li, A. Singh, S. Krylyuk, A. Davydov, and R. Jaramillo. Near-infrared photonic phase-change properties of transition metal ditellurides, in: N. P. Kobayashi, A. A. Talin, A. V. Davydov (Eds.), Low-Dimensional Mater. Devices, SPIE (2019).

    B. Davey and B. L. Evans. The optical properties of MoTe2 and WSe2, Phys. Stat. Sol. 13, 483 (1972).

    X. Yu, P. Yu, D. Wu, B. Singh, Q. Zeng, H. Lin, W. Zhou, J. Lin, K. Suenaga, Z. Liu, and Q. J. Wang. Atomically thin noble metal dichalcogenide: a broadband mid-infrared semiconductor, Nat. Commun. 9, 1545 (2018).

    A. Kandemir, B. Akbali, Z. Kahraman, S. V. Badalov, M. Ozcan, F. Iyikanat, and H. Sahin. Structural, electronic and phononic properties of PtSe2 : from monolayer to bulk, Semicond. Sci. Technol. 33, 085002 (2018).

    J. Shi, Y. Huan, M. Hong, R. Xu, P. Yang, Z. Zhang, X. Zou, and Y. Zhang. Chemical vapor deposition grown large-scale atomically thin platinum diselenide with semimetal–semiconductor transition, ACS Nano 13, 8442 (2019).

    Y. Zhao, J. Qiao, Z. Yu, P. Yu, K. Xu, S. P. Lau, W. Zhou, Z. Liu, X. Wang, W. Ji, and Y. Chai. High-electron-mobility and air-stable 2D layered PtSe2 FETs, Adv. Mater. 29, 1604230 (2017).

    C. Yim, K. Lee, N. McEvoy, M. O’Brien, S. Riazimehr, N. C. Berner, C. P. Cullen, J. Kotakoski, J. C. Meyer, M. C. Lemme, and G. S. Duesberg. High-performance hybrid electronic devices from layered PtSe2 films grown at low temperature, ACS Nano 10, 9550 (2016).

    L. Zeng, S. Lin, Z. Lou, H. Yuan, H. Long, Y. Li, W. Lu, S. P. Lau, D. Wu, and Y. H. Tsang. Ultrafast and sensitive photodetector based on a PtSe2/silicon nanowire array heterojunction with a multiband spectral response from 200 to 1550 nm, NPG Asia Mater. 10, 352 (2018).

    L. Wang, S. Zhang, N. McEvoy, Y.-yang Sun, J. Huang, Y. Xie, N. Dong, X. Zhang, I. M. Kislyakov, J. M. Nunzi, L. Zhang, and J. Wang. Nonlinear optical signatures of the transition from semiconductor to semimetal in PtSe2, Laser Photonics Rev. 13, 1900052 (2019).

    M. O’Brien, N. McEvoy, C. Motta, J.-Y. Zheng, N. C. Berner, J. Kotakoski, K. Elibol, T. J. Pennycook, J. C. Meyer, C. Yim, M. Abid, T. Hallam, J. F. Donegan, S. Sanvito, and G. S. Duesberg. Raman characterization of platinum diselenide thin films, 2D Mater. 3, 021004 (2016).

    J. Xie, D. Zhang, X.-Q. Yan, M. Ren, X. Zhao, F. Liu, R. Sun, X. Li, Z. Li, S. Chen, Z.-B. Liu, and J.-G. Tian. Optical properties of chemical vapor deposition-grown PtSe2 characterized by spectroscopic ellipsometry, 2D Mater. 6, 035011 (2019).

    Y. Lee, S. Bae, H. Jang, S. Jang, S. E. Zhu, S. H. Sim, Y. Il Song, B. H. Hong, and J. H. Ahn. Wafer-scale synthesis and transfer of graphene films, Nano Lett. 10, 490 (2010).

    M. Lee, L. Viciu, L. Li, Y. Wang, M. L. Foo, S. Watauchi, R. A. Pascal, R, J, Cava, and N. P. Ong. Large enhancement of the thermopower in NaxCoO2 at high Na doping, Nat. Mater., 5, 537 (2006).

    S. Hembacher, F. J. Giessibi, J. Mannhart, and C. F. Quate. Revealing the hidden atom in graphite by low-temperature atomic force microscopy, PNAS, 100, 12539 (2003).

    Z. Q. Li, C. J. Lu, Z. P. Xia, Y. Zhou, and Z. Luo. X-ray diffraction patterns of graphite and turbostractic carbon, Carbon, 45, 1686 (2007).

    A. Das, A. K. Brown, M. L. Mah, and J. J. Talghader. Photon difussion in microscale solids, J. Phys.: Condens. Matter, 31, 335703 (2019).

    S. Ergun, J. B. Yasinsky, and J. R. Townsend. Transverse and longitudinal optical properties of graphite, Carbon 5, 403 (1967).

    M. S. Ukhtary and R. Saito. Surface plasmons in graphene and carbon nanotubes, Carbon 167, 455 (2020).

    T. G. Pedersen. Analytic calculation of the optical properties of graphite, Phys. Rev. B 67, 113106 (2003).

    P. E. Trevisanutto, M. Holzmann, M. Côté, and V. Olevano. Ab initio high-energy excitonic effects in graphite and graphene, Phys. Rev. B 81, 121405(R) (2010).

    A. K. Solanki, A. Kashyap, T. Nautiyal, S. Auluck, and M. A. Khan. Band structure and optical properties of graphite, Solid State Commun. 100, 645 (1996).

    M. Uemoto, S. Kurata, N. Kawaguchi, and K. Yabana. First-principles study of ultrafast and nonlinear optical properties of graphite thin films, Phys. Rev. B 103, 85433 (2021).

    A. B. Kuzmenko, E. V. Heumen, F. Carbone, and D. V. D. Marel. Universal optical conductance of graphite, Phys. Rev. Lett. 100, 117401 (2008).

    R. J. Papoular and R. Papoular. Some optical properties of graphite from IR to millimetric wavelengths, Mon. Not. R. Astron. Soc. 443, 2974 (2014).

    A. C. Ferrari. Raman spectroscopy of graphene and graphite: Disorder, electron-phonon coupling, doping and nonadiabatic effects, Solid State Communications, 143, 47 (2007).

    R. J. Nemanich and S. A. Solin. First- and second-order Raman scattering from finite-size crystals of graphite, Phys. Rev. B, 20, 392 (1979).

    R. P. Vidano, D. B. Fischbach, L. J. Willis, and T. M. Loehr. Observation of Raman band shifting with excitation wavelength for carbons and graphite, Solid State Communications, 39, 341 (1981).

    H. -N. Liu, X. Cong, M. L. Lin, and P. -H. Tan. The intrinsic temperature-dependent Raman spectra of graphite in the temperature range from 4K to 1000K, Carbon, 152, 451 (2019).

    R, Sankar, G. N. Rao, I. P. Muthuselvam, C. Butler, N. Kumar, G. S. Murugan, C. Shekhar, T. R. Chang, C. Y. Wen, C. W. Chen, W. L. Lee, M. T. Lin, H. T. Jeng, C. Felser, and F. C. Chou. Polymorphic layered MoTe2 from semiconductor, topological insulator, to Weyl semimetal, Chem. Mater. 29, 699 (2017).

    X. J. Yan, Y. Y. Lv, L. Li, X. Li, S. H. Yao, Y. B. Chen, X. P. Liu, H. Lu, M. H. Lu, and Y. F. Chen. Investigation on the phase-transition-induced hysteresis in the thermal transport along the c-axis of MoTe2, npj Quant Mater, 2, 31 (2017).

    G. A. Slack and S. Galginaitis. Thermal conductivity and phonon scattering by magnetic impurities in CdTe, Phys. Rev. 133, A253 (1964).

    C. Ruppert, O. B. Aslan, and T. F. Heinz. Optical properties and band gap of single- and few- layer MoTe2 crystals, Nano Lett. 14, 6231 (2014).

    R. Oliva, T. Wozniak, F. Dybala, J. Kopaczek, P. Scharoch, and R. Kudrawiec. Hidden spin-polarized bands in semiconducting 2H-MoTe2, Mater. Res. Lett. 8, 75 (2020).

    F. Lahourpour, A. Boochani, S. S. Parhizgar, and S. M. Elahi, Structural. electronic and optical properties of graphene-like nano-layers MoX2 (X: S, Se, Te): DFT study, J. Theor. Appl. Phys. 13, 191 (2019).

    W. Zheng, M. Bonn, and H. I. Wang. Photoconductivity multiplication in semiconducting few-layer MoTe2, Nano Lett. 20, 5807 (2020).

    S-i. Kimura, Y. Nakajima, Z. Mita, R. Jha, R. Higashinaka, T. D. Matsuda, and Y. Aoki. Optical evidence of the type-II Weyl semimetals MoTe2 and WTe2, Phys. Rev. B. 99, 195203 (2019).

    J. Kopaczek, S. Zelewski, K. Yumigeta, R. Sailus, S. Tongay, and R. Kudrawiec. Temperature dependence of the indirect gap and the direct optical transitions at the high-symmetry point of the Brillouin zone and band nesting in MoS2, MoSe2, MoTe2, WS2, and WSe2 crystals, J. Phys. Chem. C. 126, 5665 (2022).

    J. A. Wilson and A. D. Yoffe. The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties, Adv. Phys. 18, 193 (1969).

    A. R. Beal, J. C. Knights and W. Y. Liang. Transmission spectra of some transition metal dichalcogenides: II. Group VIA: Trigonal prismatic coordination, J. Phys. C: Solid State Phys. 5, 3540 (1972).

    C. Zhang, A. Johnson, C. L. Hsu, L. J. Li, and C. K. Shih. Direct imaging of band profile in single layer MoS2 on graphite: Quasiparticle energy gap, metallic edge states, and edge band bending, Nano Lett., 14, 2443 (2014).

    H. M. Hill, A. F. Rigosi, C. Roquelet, A. Chernikov, T. C. Berkelbach, D. R. Reichman, M. S. Hybertsen, L. E. Brus, and T. F. Heinz. Observation of excitonic Rydberg states in monolayer MoS2 and WS2 by photoluminescence excitation spectroscopy, Nano Lett., 15, 2992 (2015).

    H. L. Liu, C. C. Shen, S. H. Su, C. L. Hsu, M. Y. Li, and L. J. Li. Optical properties of monolayer transition metal dichalcogenides probed by spectroscopic ellipsometry, Appl. Phys. Lett. 105, 201905 (2014).

    K. He, N. Kumar, L. Zhao, Z. Wang, K. F. Mak, H. Zhao, and J. Shan. Tightly bound excitons in monolayer WSe2, Phys. Rev. Lett., 113, 026803 (2014).

    A. R. Beal and W. Y. Liang, Excitons in 2H-WSe2 and 3R-WS2. J. Phys. C: Solid State Phys., 9, 2459 (1976).

    J. Yang, T. Lu, Y. W. Myint, J. Pei, D. Macdonald, J. C. Zheng, and Y. Lu. Robust excitons and trions in monolayer MoTe2, ACS Nano, 9, 6603 (2015).

    E. Jung, J. C. Park, Y. S. Seo, J. H. Kim, J. Hwang, and Y. H. Lee. Unusually large exciton binding energy in multilayered 2H-MoTe2, Sci. Rep. 12, 4543 (2022).

    M. Sajjad, N. Singh, and U. Schwingenschlogl. Strongly bound excitons in monolayer PtS2 and PtSe2, Appl. Phys. Lett., 112, 043101 (2018).

    A. V. Kuklin, and H. Agren. Quasiparticle electronic structure and optical spectra of single-layer and bilayer PdSe2: Proximity and defect-induced band gap renormalization, Phys. Rev. B., 99, 245114 (2019).

    K. W. Lau, C. Cocchi, and C. Draxl. Electronic and optical excitations of two-dimensional ZrS2 and HfS2 and their heterostructure, Phys. Rev. Mater., 3, 074001 (2019).

    J. Feldmann, G. Peter, E. O. Gobel, P. Dawson, K. Moore, C. Foxon, and R. J. Elliott. Linewidth dependence of radioactive exciton lifetimes in quantum wells, Phys. Rev. Lett., 60, 243 (1988).

    W. Li, A. G. Birdwell, M. Amani, R. A. Burke, X. Ling, Y. H. Lee, X. Liang, L. Peng, C. A. Richter, J. Kong, D. J. Gundlach, and N. V. Nguyen. Broadband optical properties of large-area monolayer CVD molybdenum disulfide, Phys. Rev. B 90, 195434 (2014).

    N. Saigal and S. Ghosh. H-point exciton transitions in bulk MoS2, Appl. Phys. Lett. 106, 182103 (2015).

    J. Kopaczek, M. P. Polak, P. Scharoch, K. Wu, B. Chen, S. Tongay, and R. Kudrawiec. Direct optical transitions at K- and H-point of Brillouin zone in bulk MoS2, MoSe2, WS2, and WSe2, J. Appl. Phys. 119, 235705 (2016).

    M. Dendzik, M. Michiardi, C. Sanders, M. Bianchi, J. A. Miwa, S. S. Gronborg, J. V. Lauritsen, A. Bruix, B. Hammer, and P. Hofmann. Growth and electronic of epitaxial single-layer WS2 on Au (111), Phys. Rev. B 92, 245442 (2015).

    Y. Zhang, M. M. Ugeda, C. Jin, S. F. Shi, A. J. Bradley, A. M. Recio, H. Ryu, J. Kim, S. Tang, Y. Kim, B. Zhou, C. Hwang, Y. Chen, F. Wang, M. F. Crommie, Z. Hussain, Z. X. Shen, and S. K. Mo. Electronic structure, surface doping, and optical response in epitaxial WSe2 thin films, Nano Lett. 16, 2485 (2016).

    R. F. Frindt. The optical properties of single crystals of WSe2 and MoTe2, J. Phys. Chem. Solids, 24, 1107 (1963).

    C. Ruppert, O. B. Aslan, and T. Heinz. Optical properties and band gap of single- and few-layer MoTe2 crystals, Nano Lett., 14, 6231 (2014).

    M. A. U. Absor, I. Santoso, Harsojo, and K. Abraha, Defect-induced large spin-orbit splitting in monolayer PtSe2, Phys. Rev. B., 96, 115128 (2017).

    J. Liu, W. J. Hou, C. Cheng, H. X. Fu, and J. T. Sun. Intrinsic valley polarization of magnetic VSe2 monolayers, J. Phys. Condens. Matter., 29, 255501 (2017).

    D. W. Latzke, W. Zhang, A. Suslu, T. R. Chang, H. Lin, H. T. Jeng, S. Tongay, J. Wu, A. Bansil, and A. Lanzara. Electronic structure, spin-orbit coupling, and interlayer interaction in bulk MoS2 and WS2, Phys. Rev. B, 91, 235202 (2015).

    H. Yeh, Y. Wu, T. Yeh, C. Li, Y. Chou, M. Li, Y. Chou, C. W. Luo, L. Li, and W. H. Chang. Scalable fabrication of PtSe2 metal-semiconductor lateral junctions via local layer engineering (private communication).

    I. Dionisiev, V. Marinova, K. Buchkov, H. Dikov, I. Avramova, and D. Dimitrov. Synthesis and characterizations of 2D platinum diselenide, Mater. Proc. 2, 22 (2020).

    X. Zhu and F. Lu. Single crystal growth of PtSe2 via CuSe flux method and its large magneto-resistance, Journal of Alloys and Compounds 785, 871 (2019).

    S. Yin, W. Zhang, C. Tan, L. Chen, J. Chen, G. Li, H. Zhang, Y. Zhang, W. Wang, and L. Li. Thermal conductivity of few-layer PtS2 and PtSe2 obtained from optothermal Raman spectroscopy, J. Phys. Chem. C, 125, 16129 (2021).

    J. G. Son, M. Son, K. J. Moon, B. H. Lee, J. M. Myoung, M. S. Strano, M. H. Ham, and C. A. Ross. Sub-10 nm graphene nanoribbon array field-effect transistors fabricated by block copolymer lithography, Adv. Mater. 25, 4723 (2013).

    E. G. Caurel, A. de Martino, J. P. Gaston, and L. Yan. Application of spectroscopic ellipsometry and mueller ellipsometry to optical characterization, Appl. Spectrosc. 67, 1 (2013).

    K. Dorywalski, I. Maciejewski, and T. Krzyzynski. Spectroscopic ellipsometry technique as a materials characterization tool for mechatronic systems – The case of composition and doping concentration monitoring in SBN crystals, Mechatronics, 37, 33 (2016).

    S. Zhang, N. Zhang, Y. Zhao, T. Cheng, X. Li, R. Feng, H. Xu, Z. Liu, J. Zhang, and L. Tong. Spotting the differences in two-dimensional materials – the Raman scattering perpective, Chem. Soc. Rev., 47, 3217 (2018).

    X. Cong, X. L. Liu, M. L. Lin, and P. H. Tan. Application of Raman spectroscopy to probe fundamental properties of two-dimensional materials, npj 2D Mater Appl, 4, 13 (2020).

    H. Fujiwara. Spectroscopic Ellipsometry: Principles and Applications (2007).

    F. Wooten. Optical Properties of Solids (Academic Press, New York, 1972).

    J. A. Woollam and P. G. Snyder. Fundamentals and applications of variable angle spectroscopic ellipsometry, Mater. Sci. Eng. B. 5, 279-283 (1990).

    D. Gonçalves and E. A. Irene. Fundamentals and applications of spectroscopic ellipsometry, Quim. Nova 25, 794 (2002).

    V. M. Airaksinen, Handbook of silicon based MEMS materials and Technologies (second edition), Micro and Nano Techonologies 381-390 (2015).

    D. Lehmann, F. Seidel, and D. R.T. Zahn. Thin films with high surface roughness: thickness and dielectric function analysis using spectroscopic ellipsometry, SpringerPlus 3, 82 (2014).

    Z. V. Popović. Raman Scattering in Materials Science, Mater. Sci. Forum 214, 11 (1996).

    Y. C. Cho and S. I. Ahn. Fabricating a Raman spectrometer using an optical pickup unit and pulsed power, Scientific Reports 10, 11692 (2020).

    H. W. Chen, Y.-W. Chen, J.-L. Kuo, Y. C. Lai, F. C. Chou, C. H. Du, and H. L. Liu.. Spin-charge-lattice coupling in YBaCuFeO5: Optical properties and first-principles calculations, Scientific Reports 9, 3223 (2019).

    H. L. Liu, T. Yang, J. H. Chen, H. W. Chen, H. H. Guo, R. Saito, M. Y. Li, and L. J. Li. Temperature-dependent optical constants of monolayer MoS2, MoSe2, WS2, and WSe2: spectroscopic ellipsometry and first-principles calculations, Scientific Reports 10, 15282 (2020).

    M. A. El-Sayed, G. A. Ermolaev, K. V. Voronin, R. I. Romanov, G. I. Tselikov, D. I. Yakubovsky, N. V. Doroshina, A. B. Nemtsov, V. R. Solovey, A. A. Voronov, S. M. Novikov, A. A. Vyshnevyy, A. M. Markeev, A. V. Arsenin, and V. S. Volkov. Optical constants of chemical vapor deposited graphene for photonic applications, Nanomaterials, 11, 1230 (2021).

    X. He, E. Xie, M. S. Islim, A. A. Purwita, J. J. D. McKendry, E. Gu, H. Haas, and M. D. Dawson. 1 Gbps free-space deep-ultraviolet communications based on III-nitride micro-LEDs emitting at 262 nm, Photonics Res. 7, B41 (2019).

    F. Ferreira, A. J. Chaves, N. M. R. Peres and R. M. Ribeiro. Excitons in hexagonal boron nitride single-layer: a new platform for polaritonics in the ultraviolet, J. Opt. Soc. Am. B 36, 674 (2019).

    L. Shi and S. Nihtianov. Comparative study of silicon-based ultraviolet photodetectors, IEEE Sens. J. 12, 2453 (2012).

    G. Breit and E. Wigner. Capture of Slow Neutrons, Phys. Rev. 49, 519 (1936).

    M. V. Klein. Light Scattering in Solids I, edited by M. Cardona Springer-Verlag, Berlin, (1983).

    J. F. Scott. Soft-mode spectroscopy: Experimental studies of structural phase transitions, Rev. Mod. Phys. 46, 83 (1974).

    S. Glutsch. Excitons in low-dimensional semiconductors, edited by M. Cardona Springer-Verlag, Berlin, (2004).

    D. L. Greenaway, G. Harbeke, F. Bassani, and E. Tosatti. Anisotropy of the optical constants and the band structure of graphite, Phys. Rev. 178, 1340 (1969).

    J. S. Painter, and D. E. Ellis. Electronic band structure and optical properties of graphite from a variational approach, Phys. Rev. B 1, 4747 (1970).

    L. Vina, S. Logothetidis, and M. Cardona. Temperature dependence of the dielectric function of germanium, Phys. Rev. B 30, 1979 (1984).

    Y. P. Varshni. Temperature dependence of the energy gap in semiconductor, Physica (Utrecht) 34, 149 (1967).

    P. Lautenschlager, M. Garriga, L. Vina, and M. Cardona. Temperature dependence of the dielectric function and interband critical points in silicon, Phys. Rev. B 36, 4821 (1987).

    Y. U. Peter and M. Cardona. Fundamentals of Semiconductors: Physics and Materials Properties, Fourth edition, Springer, (2010).

    R. Saito, A. Jorio, A. G. Souza Filho, G. Dresselhaus, M. S. Dresselhaus, and M. A. Pimenta. Probing phonon dispersion relations of graphite by double resonance Raman scattering, Phys. Rev. Lett. 88, 027401 (2001).

    R. Saito, A. Gruneis, Ge G. Samsonidze, V. W. Brar, G. Dresselhaus, M. S. Dresselhaus, A. Jorio, L. G. Cancado, C. Fantini, and M. A. Pimenta. Double resonance Raman spectroscopy of single-wall carbon nanotubes, New J. Phys. 5, 157 (2003).

    S. Reich and C. Thomsen. Raman spectroscopy of graphite, Phil. Trans. R. Soc. Lond. A. 362, 1454 (2004).

    F. Tuinstra and J. L. Koenig. Raman spectrum of graphite, J. Chem. Phys. 53, 1126 (1970).

    Y. Hishiyima, H. Irumano, Y. Kaburagi, and Y. Soneda. Structure, Raman scattering, and transport properties of boron-doped graphite, Phys. Rev. B, 63, 245406 (2001).

    J. Toudert and R. Serna. Interband transitions in semi-metals, semiconductors, and topological insulators: a new driving force for plasmonics and nanophotonics [invited], Opt. Mater. Express 7, 2299 (2017).

    A. Arora, M. Druppel, R. Schmidt, T. Deilmann, R. Schneider, M. R. Molas, P. Marauhn, S. M. de Vasconcellos, M. Potemski, M. Rohlfing, and R. Bratschitsch. Interlayer excitons in a bulk van der Waals semiconductor, Nat. Commun 8, 639 (2017).

    V. Grasso, G. Mondio, and G. Saitta. Optical constants of MoTe2 from reflectivity measurements. (Brillouin zone transitions), J. Phys. C: Solid State Phys. 5, 1101 (1972).

    J. I. Pankove, Optical Processes in Semiconductors (Springer, New York, 1971).

    Q. Ji, C. Li, J. Wang, J. Niu, Y. Gong, Z. Zhang, Q. Fang, Y. Zhang, J. Shi, L. Liao, X. Wu, L. Gu, Z. Liu, and Y. Zhang. Metallic vanadium disulfide nanosheets as a platform material for multifunctional electrode applications, Nano Lett. 17, 4908 (2017).

    H. P. Komsa and A. V. Krasheninnikov. Effect of confinement and environment on the electronic structure and exciton binding energy of MoS2 from first principles, Phys. Rev. B 86, 241201(R) (2012).

    A. J. Grant, T. M. Griffiths, G. D. Pitt, and A. D. Yoffe. The electrical properties and the magnitude of the indirect gap in the semiconducting transition metal dichalcogenide layer crystals, J. Phys. C: Solid State Phys. 8, 1975 (1975).

    S. J. Zelewski and R. Kudrawiec. Photoacoustic and modulated reflectance studies of indirect and direct band gap in van der Waals crystals, Sci. Rep. 7, 15365 (2017).

    J. P. Fraser, L. Masaityte, J. Zhang, S. Laing, J. C. M. Lopez, A. F. McKenzie, J. C. McGlynn, V. Panchal, D. Graham, O. Kazakova, T. Pichler, D. A. MacLaren, D. A. J. Moran, and A. Y. Ganin. Selective phase growth and precise-layer control in MoTe2, Commun Mater 1, 48 (2020).

    G. Froehlicher, E. Lorchat, and S. Berciaud. Direct versus indirect band gap emission and exciton-exciton annihilation in atomically thin molybdenum ditelluride (MoTe2), Phys. Rev. B 94, 085429 (2016).

    C. Cong, Y. Zhang, W. Chen, J. Chu, T. Lei, J. Pu, L. Dai, C. Wu, Y. Cheng, T. Zhai, L. Li, and J. Xiong. Electronic and optoelectronic applications based on 2D novel anisotropic transition metal dichalcogenides, Adv. Sci. 4, 1700231 (2017).

    J. Wu, L. Meng, J. Yu, and Y. Li. A first-principles study of electronic properties of twisted MoTe2, Phys. Status Solidi B 257, 1900412 (2020).

    H. J. Kim, S. H. Kang, I. Hamada, and Y. W. Son. Origins of the structural phase transitions in MoTe2 and WTe2, Phys. Rev. B 95, 180101(R) (2017).

    K. P. O’Donnell and X. Chen. Temperature dependence of semiconductor band gaps, Appl. Phys. Lett. 58, 2924 (1991).

    A. Arora, T. Deilmann, P. Marauhn, M. Druppel, R. Schneider, M. R. Molas, D. Vaclavkova, S. M. de Vasconcellos, M. Rohlfing, M. Potemski, and R. Bratschitsch. Valley-contrasting optics of interlayer excitons in Mo- and W-based bulk transition metal dichalcogenides, Nanoscale, 10, 15571 (2018).

    I. C. Gerber, E. Courtade, S. Shree, C. Robert, T. Taniguchi, K. Watanabe, A. Balocchi, P. Renucci, D. Lagarde, X. Marie, and B. Urbaszek. Interlayer excitons in bilayer MoS2 with strong oscillator strength up to room temperature, Phys. Rev. B. 99, 035443 (2019).

    R. Huisman, R. de Jonge, C. H. F. Jellinek. Trigonal-prismatic coordination in solid compounds of transition metals, J. Solid State Chem. 3, 56 (1971).

    B. Xu, M. Dai, L. X. Zhao, K. Wang, R. Yang, W. Zhang, J. Y. Liu, H. Xiao, G. F. Chen, A. J. Taylor, D. A. Yarotski, R. P. Prasankumar, and X. G. Qiu. Optical spectroscopy of the Weyl semimetal TaAs, Phys. Rev. B 93, 121110(R) (2016).

    K. Ueno and K. Fukushima. Changes in structure and chemical composition of -MoTe2 and -MoTe2 during heating in vacuum conditions, Appl. Phys. Express 8, 095201 (2015).

    D. Rhodes, D. A. Chenet, B. E. Janicek, C. Nyby, Y. Lin, W. Jin, D. Edelberg, E. Mannebach, N. Finney, A. Antony, T. Schiros, T. Klarr, A. Mazzoni, M. Chin, Y.-c Chiu, W. Zheng, Q. R. Zhang, F. Ernst, J. I. Dadap, X. Tong, J. Ma, R. Lou, S. Wang, T. Qian, H. Ding, R. M. Osgood, Jr, D. W. Paley, A. M. Lindenberg, P. Y. Huang, A. N. Pasupathy, M. Dubey, J. Hone, and L. Balicas. Engineering the structural and electronic phases of MoTe2 through W substitution, Nano Lett. 17, 1616 (2017).

    R. Clarke, E. Maeseglia, and H. P. Hughes. A low-temperature structural phase transition in -MoTe2, Philosophical Magazine B 38, 121 (1978).

    K. Zhang, C. Bao, Q. Gu, X. Ren, H. Zhang, K. Deng, Y. Wu, Y. Li, J. Feng, and S. Zhou. Raman signatures of inversion symmetry breaking and structural phase transition in type-II Weyl semimetal MoTe2, Nat. Commun. 7, 13552 (2016).

    M. Yamamoto, S. T. Wang, M. Ni, Y. F. Lin, S. L. Li, S. Aikawa, W. B. Jian, K. Ueno, K. Wakabayashi, and K. Tsukagoshi. Strong enhancement of Raman scattering from a bulk-inactive vibrational mode in few-layer MoTe2, ACS Nano 8, 3895 (2014).

    H. Guo, T. Yang, M. Yamamoto, L. Zhou, R. Ishikawa, K. Ueno, K. Tsukagoshi, Z. Zhang, M. S. Dresselhaous, and R. Saito. Double resonance Raman modes in monolayer and few-layer MoTe2, Phys. Rev. B 91, 205415 (2015).

    S. Paul, S. Karak, A. Mathew, A. Ram, and S. Saha. Electron-phonon and phonon-phonon anharmonic interactions in 2H-MoX2 (X = S, Te): A comprehensive resonant Raman study, Phys. Rev. B 104, 075418 (2021).

    L. Zhou, A. Zubair, Z. Wang, X. Zhang, F. Ouyang, K. Xu, W. Fang, K. Ueno, J. Li, T. Palacios, J. Kong, and M. S. Dresselhaus. Synthesis of high-quality large-area homogenous 1T MoTe2 from chemical vapor deposition, Adv. Mater. 28, 9526 (2016).

    X. Ma, P. Guo, C. Yi, Q. Yu, A. Zhang, J. Ji, Y. Tian, F. Jin, Y. Wang, K. Liu, T. Xia, Y. Shi, and Q. Zhang. Raman scattering in the transition-metal-dichalcogenides of 1T-MoTe2, Td-MoTe2, and Td-WTe2, Phys. Rev. B 94, 214105 (2016).

    E. Hecht. Optics (Addison Wesley, 2002).

    M. Born and E. Wolf. Principles of Optics - 7th (expanded) edition (Cambridge University Press, 1999).

    R. Soref. The past, present, and future of silicon photonics, IEEE J. Sel. Top. Quantum Electron. 12, 1678 (2006).

    M. Ma, F. W. Mont, D. J. Poxson, J. Cho, E. F. Schubert, R. E. Welser, and A. K. Sood. Enhancement of photovoltaic cell response due to high-refractive-index encapsulants, J. Appl. Phys. 108, 043102 (2010).

    J. Komma, C. Schwarz, G. Hofmann, D. Heinert, and R. Nawrodt. Thermo-optic coefficient of silicon at 1550 nm and cryogenic temperatures, Appl. Phys. Lett 101, 041905 (2012).

    S. Wiechmann and J. Müller. Thermo-optic properties of TiO2, Ta2O5 and Al2O3 thin films for integrated optics on silicon, Thin Solid Films 517, 6847 (2009).

    J. I. Pankove. Optical Proccesses in Semiconductors (New York, 1971).

    X. Zhao, F. Liu, D. Liu, X.-Q. Yan, C. Huo, W. Hui, J. Xie, Q. Ye, C. Guo, Y. Yao, Z.-B. Liu, and J.-G. Tian. Thickness-dependent ultrafast nonlinear absorption properties of PtSe2 films with both semiconducting and semimetallic phases, Appl. Phys. Lett. 115, 263102 (2019).

    X. Chen, S. Zhang, L. Wang, Y.-F. Huang, H. Liu, J. Huang, N. Dong, W. Liu, I. M. Kislyakov, J. M. Nunzi, L. Zhang, and J. Wang. Direct observation of interlayer coherent acoustic phonon dynamics in bilayer and few-layer PtSe2, Photonics Res. 7, 1416 (2019).

    R. Pässler, E. Griebl, H. Riepl, G. Lautner, S. Bauer, H. Preis, W. Gebhardt, B. Buda, D. J. As, D. Schikora, K. Lischka, K. Papagelis, and S. Ves. Temperature dependence of exciton peak energies in ZnS, ZnSe, and ZnTe epitaxial films, J. Appl. Phys. 86, 4403 (1999).

    B. Pejova, B. Abay, and I. Bineva. Temperature dependence of the band-gap energy and sub-band-gap absorption tails in strongly quantized ZnSe nanocrystals deposited as thin films, J. Phys. Chem. C 114, 15280 (2010).

    Z. M. Gibbs, H. Kim, H. Wang, R. L. White, F. Drymiotis, M. Kaviany, and G. J. Snyder. Temperature dependence band gap in PbX (X = S, Se, Te), Appl. Phys. Lett. 103, 262109 (2013).

    K. Zhao, F. Huang, C. M. Dai, W. Li, S. Y. Chen, K. Jiang, Y. P. Huang, Z. Hu, and J. Chu. Temperature dependence of phonon modes, optical constants, and optical band gap in two-dimensional ReS2 films, J. Phys. Chem. C 122, 29464 (2018).

    A. Cingolani, M. Ferrara, M. Lugarà, and F. Lévy. The Raman spectra of CdI2, Solid State Commun. 50, 911 (1984).

    M. Yan, E. Wang, X. Zhou, G. Zhang, H. Zhang, K. Zhang, W. Yao, N. Lu, S. Yang, S. Wu, T. Yoshikawa, K. Miyamoto, T. Okuda, Y. Wu, P. Yu, W. Duan, and S. Zhou. High quality atomically thin PtSe2 films grown by molecular beam epitaxy, 2D Mater. 4, 1 (2017).

    C. Lee, H. Yan, L. E. Brus, T. F. Heinz, J. Hone, and S. Ryu. Anomalous lattice vibrations of single- and few-layer MoS2, ACS Nano 4, 2695 (2010).

    M. Balkanski, R. F. Wallis, and E. Haro. Anharmonic effects in light scattering due to optical phonons in silicon, Phys. Rev. B 28, 1928 (1983).

    L.-C. Chen, Z.-Y. Cao, H. Yu, B.-B. Jiang, L. Su, X. Shi, L.-D. Chen, and X.-J. Chen. Phonon anharmonicity in thermoelectric palladium sulfide by Raman spectroscopy, Appl. Phys. Lett. 113, 022105 (2018).

    下載圖示
    QR CODE