研究生: |
陳佳禾 Chen, Chia-Her |
---|---|
論文名稱: |
以雙階段模糊分段迴歸分析預測多世代行動通訊技術之演變與年專利授權量 Dual-Phase Fuzzy Piecewise Regression Analyses for Predicting the Evolution and Annual Patent Grants in Multiple Generation Mobile Technology |
指導教授: |
黃啟祐
Huang, Chi-Yo |
口試委員: |
黃日鉦
Huang, Jih-Jeng 陳良駒 Chen, Liang-Chu 黃啟祐 Huang, Chi-Yo |
口試日期: | 2022/07/17 |
學位類別: |
碩士 Master |
系所名稱: |
工業教育學系 Department of Industrial Education |
論文出版年: | 2023 |
畢業學年度: | 112 |
語文別: | 英文 |
論文頁數: | 108 |
中文關鍵詞: | 專利分析 、技術預測 、技術生命週期 、模糊分段迴歸 、多世代行動通訊技術 |
英文關鍵詞: | Patent Analysis, Technology Forecast, Technology Life Cycle, Fuzzy Piecewise Regression, Multiple Generation Mobile Technology |
研究方法: | 專利分析 、 模糊分段迴歸 |
DOI URL: | http://doi.org/10.6345/NTNU202301827 |
論文種類: | 學術論文 |
相關次數: | 點閱:198 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
技術週期 (Technology Life Cycle) 預測在高科技產品的策略規劃和政策訂定扮演重要角色,近年來,雖然多有研究預測技術生命週期,但預測多世代技術生命週期之研究甚少,以專利為基礎,預測多世代技術生命週期之研究更為罕見,由於多世代技術於每一生命週期中的行為類似,專利數量是否也呈現相同模式,值得進一步研究,但相關研究甚少。
自1980 年代以來,行動通訊技術進步快速;大約每十年,人們就發展出新一代的技術,使通訊系統不斷完善,並加速全球經濟發展與文明的進步。每一世代行動通訊技術之年專利量變化是否與前世代呈現相同之模式,亦少有學者探討。
因此,本研究導入模糊分段迴歸分析,預測多世代技術生命週期已跨越研究缺口。首先,透過前世代 (例如,1G、2G、3G) 行動通訊專利生命週期長度,預測新世代 (例如,4G)技術生命週期長度;其次,透過前世代技術生命週期特定年份之專利數量,發展該年份之模糊分段迴歸方程式,並以之預測未來世代產品於該年度之專利授權量。
依據研究結果,預測4G至6G生命周期和5G每年授予的專利數量的準確率分別為74.24%、91.17%、88.57%和91.43%。
此外,於多世代技術預測中,模糊分段迴歸分析相較傳統的線性迴歸分析與模糊二次迴歸,有較佳的準確率,發展完善之預測模式,可作為預測各種多世代技術之基礎,也可作為政府訂定創新政策、企業發展策略之依據。
Forecasting of technology life cycle is crucial for strategic planning and policy formation of high-tech products. While there has been a considerable amount of research conducted on forecasting the life cycles of products, there is a scarcity of studies focused on predicting the life cycles of multi-generation technologies. Research on estimating the life cycle of multi-generation technology is extremely scarce, primarily relying on patents as a foundation. Given the similarity in the life cycle of each generation, it is interesting investigating if the number of patents follows a similar pattern in multi-generation technology. However, there is a scarcity of relevant research on this topic.
Mobile communication technology has experienced tremendous advancements since the 1980s. Approximately every decade, a new generation of technology is established, continuously improving communication networks and driving global economic development and the progress of civilization. There has been limited scholarly investigation into whether the pattern of changes in the number of patents for each successive generation of mobile communication technology is comparable to that of the preceding generation.
Therefore, this study aims to introduce fuzzy linear piecewise regression analysis as a method to anticipate the crossing of the research gap in the multi-generation technological life cycle. At first, this research forecast the duration of the life cycle for the upcoming generation (e.g., 4G) based on the length of the technology life cycle for the preceding generations (e.g., 1G, 2G, 3G). Then, this research utilizes the quantity of patents in a particular year of the previous generation's technology life cycle to anticipate the progress made in that year. The fuzzy piecewise regression equation is employed to forecast the quantity of patent authorizations for forthcoming generations of products within a certain year.
Based on the analytic results, the accuracy of predicting the 4G to 6G life time and the annual amount of patents granted for the fifth-generation (5G) are 74.24%, 91.17%, 88.57%, and 91.43%, respectively.
The research findings indicate that fuzzy piecewise regression analysis outperforms standard linear regression analysis and fuzzy quadratic regression in multi-generation technology prediction in terms of accuracy. The sophisticated and flawless prediction model can be utilized to forecast a wide range of multi-generational technologies. Additionally, it can serve as the foundation for the government to create innovation policies and plans for enterprise development.
Adamuthe, A. C., & Thampi, G. T. (2019). Technology forecasting: A case study of computational technologies. Technological Forecasting and Social Change, 143, 181-189.
Albert, T., Moehrle, M. G., & Meyer, S. (2015). Technology maturity assessment based on blog analysis. Technological Forecasting and Social Change, 92, 196-209.
Ampah, J. D., Jin, C., Fattah, I. M. R., Appiah-Otoo, I., Afrane, S., Geng, Z., ... & Liu, H. (2023). Investigating the evolutionary trends and key enablers of hydrogen production technologies: A patent-life cycle and econometric analysis. International Journal of Hydrogen Energy, 48(96), 37674-37707.
Anderson, T. R., Daim, T. U., & Kim, J. (2008). Technology forecasting for wireless communication. Technovation, 28(9), 602-614.
Armstrong, J. (2009). OFDM for optical communications. Journal of lightwave technology, 27(3), 189-204.
Asai, H., Tanaka, S., & Uegima, K. (1982). Linear regression analysis with fuzzy model. IEEE Transections. Systems Man Cybern, 12, 903-907.
Barbarossa, S., Pompili, M., & Giannakis, G. B. (2002). Channel-independent synchronization of orthogonal frequency division multiple access systems. IEEE Journal on Selected Areas in Communications, 20(2), 474-486.
Bajestani, N. S., Kamyad, A. V., Esfahani, E. N., & Zare, A. (2018). Prediction of retinopathy in diabetic patients using type-2 fuzzy regression model. European Journal of Operational Research, 264(3), 859-869.
Behkami, N. A., & Daim, T. U. (2012). Research forecasting for health information technology (HIT), using technology intelligence. Technological Forecasting and Social Change, 79(3), 498-508.
Bhalla, M. R., & Bhalla, A. V. (2010). Generations of mobile wireless technology: A survey. International Journal of Computer Applications, 5(4), 26-32.
Bhandari, N., Devra, S., & Singh, K. (2017). Evolution of cellular network: from 1G to 5G. International Journal of Engineering and Techniques, 3(5), 98-105.
Bhavyashree, S., Mishra, M., & Girisha, G. C. (2017). Fuzzy regression and multiple linear regression models for predicting mulberry leaf yield: A comparative study. International Journal of Agricultural and Statistical Sciences, 13(1), 149-152.
Bockelmann, C., Pratas, N. K., Wunder, G., Saur, S., Navarro, M., Gregoratti, D., ... & Dekorsy, A. (2018). Towards massive connectivity support for scalable mMTC communications in 5G networks. IEEE access, 6, 28969-28992.
Byun, J., Sung, T. E., & Park, H. W. (2018). Technological innovation strategy: how do technology life cycles change by technological area. Technology Analysis & Strategic Management, 30(1), 98-112.
Caldwell, R., & Anpalagan, A. (2004). HSDPA: An overview. IEEE Canadian Review, 46, 22-24.
Čaušević, S., & Medić, A. (2021). 4G to 5G Network Evolution: Advantages and Differences. Science and Research Journal (2619-9955), 4(4).
Chang, P.-T. (2002). Fuzzy stage characteristic-preserving Patent Life Cycle modeling. Fuzzy Sets and Systems, 126(1), 33-47.
Chen, H., Zhang, G., Zhu, D., & Lu, J. (2017). Topic-based technological forecasting based on patent data: A case study of Australian patents from 2000 to 2014. Technological Forecasting and Social Change, 119, 39-52.
Cheng, Y., Huang, L., Ramlogan, R., & Li, X. (2017). Forecasting of potential impacts of disruptive technology in promising technological areas: Elaborating the SIRS epidemic model in RFID technology. Technological Forecasting and Social Change, 117, 170-183.
Cho, H. P., Lim, H., Lee, D., Cho, H., & Kang, K. I. (2018). Patent analysis for forecasting promising technology in high-rise building construction. Technological Forecasting and Social Change, 128, 144-153.
Cho, Y., & Daim, T. (2016). OLED TV technology forecasting using technology mining and the Fisher-Pry diffusion model. Foresight, 18(2),117 - 137.
Cho, I., & Park, M. (2015). Technological-level evaluation using patent statistics: model and application in mobile communications. Cluster Computing, 18(1), 259-268.
Chukhrova, N., & Johannssen, A. (2019). Fuzzy regression analysis: systematic review and bibliography. Applied Soft Computing, 84, 105708.
Daim, T., Harell, G., & Hogaboam, L. (2012). Forecasting renewable energy production in the US. Foresight, 14(3), 225-241.
Daim, T., Lai, K. K., Yalcin, H., Alsoubie, F., & Kumar, V. (2020). Forecasting technological positioning through technology knowledge redundancy: Patent citation analysis of IoT, cybersecurity, and Blockchain. Technological Forecasting and Social Change, 161, 120329.
Daim, T. U., Anderson, T. R., & Kocaoglu, D. (2015). Technology analytics: Enhancing technology assessment with technology intelligence. Technological Forecasting & Social Change, 97, 127.
Daim, T. U., Ploykitikoon, P., Kennedy, E., & Choothian, W. (2008). Forecasting the future of data storage: Case of hard disk drive and flash memory. Foresight,10(5), 34-49.
Daim, T. U., Rueda, G., Martin, H., & Gerdsri, P. (2006). Forecasting emerging technologies: Use of bibliometrics and patent analysis. Technological Forecasting and Social Change, 73(8), 981-1012.
Dereli, T., & Altun, K. (2013). Technology evaluation through the use of interval type-2 fuzzy sets and systems. Computers & Industrial Engineering, 65(4), 624-633.
Dubois, D. J. (1980). Fuzzy sets and systems: theory and applications (Vol. 144). Cambridge, M.A.: Academic press.
Erdem, E., & Sandıkkaya, M. T. (2018). OTPaaS—One time password as a service. IEEE Transactions on Information Forensics and Security, 14(3), 743-756.
Eren, M. (2023). Fuzzy autoregressive distributed lag model-based forecasting. Fuzzy Sets and Systems, 459, 82-94.
Ernst, H. (1997). The use of patent data for technological forecasting: the diffusion of CNC-technology in the machine tool industry. Small Business Economics, 9(4), 361-381.
Fan, W., Carton, I., Kyosti, P., Karstensen, A., Jamsa, T., Gustafsson, M., & Pedersen, G. F. (2016). A Step Toward 5G in 2020: Low-cost OTA performance evaluation of massive MIMO base stations. IEEE Antennas and Propagation Magazine, 59(1), 38-47.
Frauendorf, J. L., & Almeida de Souza, É. (2022). The Different Architectures Used in 1G, 2G, 3G, 4G, and 5G Networks. In The Architectural and Technological Revolution of 5G (pp. 83-107). Cham, Switzerland: Springer International Publishing.
Gao, L., Porter, A. L., Wang, J., Fang, S., Zhang, X., Ma, T., Wang, W., & Huang, L. (2013). Technology life cycle analysis method based on patent documents. Technological Forecasting and Social Change, 80(3), 398-407.
Gibson, E., van Blommestein, K., Kim, J., Daim, T., & Garces, E. (2017). Forecasting the electric transformation in transportation: the role of battery technology performance. Technology Analysis & Strategic Management, 29(10), 1103-1120.
Giordani, M., Polese, M., Mezzavilla, M., Rangan, S., & Zorzi, M. (2020). Toward 6G networks: Use cases and technologies. IEEE Communications Magazine, 58(3), 55-61.
Gupta, D., & Gupta, H. K. Technology Forecasting & its uses in planning R&D projects.
Haupt, R., Kloyer, M., & Lange, M. (2007). Patent indicators for the technology life cycle development. Research Policy, 36(3), 387-398.
Hazelton, D. W., Selvamanickam, V., Duval, J. M., Larbalestier, D. C., Markiewicz, W. D., Weijers, H. W., & Holtz, R. L. (2009). Recent developments in 2G HTS coil technology. IEEE Transactions on Applied Superconductivity, 19(3), 2218-2222.
Healey, J. (1993). A dynamical systems approach to the early stages of boundary-layer transition. Journal of Fluid Mechanics, 255, 667-681.
Heshmaty, B., & Kandel, A. (1985). Fuzzy linear regression and its applications to forecasting in uncertain environment. Fuzzy Sets and Systems, 15(2), 159-191.
Hikkerova, L., Kammoun, N., & Lantz, J.-S. (2014). Patent life cycle: New evidence. Technological Forecasting and Social Change, 88, 313-324.
Hodara, H., & Skaljo, E. (2021). From 1G to 5G. Fiber and Integrated Optics, 40(2-3), 85-183.
Huang, C.-Y., & Tzeng, G.-H. (2008). Multiple generation Patent Life Cycle predictions using a novel two-stage fuzzy piecewise regression analysis method. Technological Forecasting and Social Change, 75(1), 12-31.
Huang, Y., Zhu, F., Porter, A. L., Zhang, Y., Zhu, D., & Guo, Y. (2020). Exploring technology evolution pathways to facilitate technology management: From a technology life cycle perspective. IEEE Transactions on Engineering Management, 68(5), 1347-1359.
Hussler, C., Muller, P., & Rondé, P. (2011). Is diversity in Delphi panelist groups useful? Evidence from a French forecasting exercise on the future of nuclear energy. Technological Forecasting and Social Change, 78(9), 1642-1653.
Inman, O. L. (2004). Technology Forecasting Using Data Envelopment Analysis. Portland: Portland State University.
Inman, O. L., Anderson, T. R., & Harmon, R. R. (2006). Predicting US jet fighter aircraft introductions from 1944 to 1982: A dogfight between regression and TFDEA. Technological Forecasting and Social Change, 73(9), 1178-1187.
Jamalipour, A., Wada, T., & Yamazato, T. (2005). A tutorial on multiple access technologies for beyond 3G mobile networks. IEEE Communications Magazine, 43(2), 110-117.
Ji, H., Park, S., Yeo, J., Kim, Y., Lee, J., & Shim, B. (2018). Ultra-reliable and low-latency communications in 5G downlink: Physical layer aspects. IEEE Wireless Communications, 25(3), 124-130.
Jiang, W., Han, B., Habibi, M. A., & Schotten, H. D. (2021). The road towards 6G: A comprehensive survey. IEEE Open Journal of the Communications Society, 2, 334-366.
Khayum, N., Rout, A., Deepak, B. B. V. L., Anbarasu, S., & Murugan, S. (2020). Application of fuzzy regression analysis in predicting the performance of the anaerobic reactor co-digesting spent tea waste with cow manure. Waste and Biomass Valorization, 11, 5665-5678.
Kim, E., Kim, J., & Koh, J. (2014). Convergence in information and communication technology (ICT) using patent analysis. Journal of Information Systems and Technology Management, 11, 53-64.
Kim, G., & Bae, J. (2017). A novel approach to forecast promising technology through patent analysis. Technological Forecasting and Social Change, 117, 228-237.
Kim, K. H., Han, Y. J., Lee, S., Cho, S. W., & Lee, C. (2019). Text mining for patent analysis to forecast emerging technologies in wireless power transfer. Sustainability, 11(22), 6240.
Kim, J., & Lee, S. (2017). Forecasting and identifying multi-technology convergence based on patent data: the case of IT and BT industries in 2020. Scientometrics, 111(1), 47-65.
Kim, W.-J., Lee, J.-D., & Kim, T.-Y. (2005). Demand forecasting for multigenerational products combining discrete choice and dynamics of diffusion under technological trajectories. Technological Forecasting and Social Change, 72(7), 825-849.
Kyebambe, M. N., Cheng, G., Huang, Y., He, C., & Zhang, Z. (2017). Forecasting emerging technologies: A supervised learning approach through patent analysis. Technological Forecasting and Social Change, 125, 236-244.
Labatut, V., & Bost, X. (2019). Extraction and analysis of fictional character networks: A survey. ACM Computing Surveys (CSUR), 52(5), 1-40.
Lee, C., Cho, Y., Seol, H., & Park, Y. (2012). A stochastic patent citation analysis approach to assessing future technological impacts. Technological Forecasting and Social Change, 79(1), 16-29.
Lee, D. C., Lough, D. L., Midkiff, S. F., Davis, N. J., & Benchoff, P. E. (1998). The next generation of the Internet: aspects of the Internet protocol version 6. IEEE network, 12(1), 28-33.
Lee, J. K., Choi, J. H., Lee, K. H., Kim, K. M., Shin, J. U., Lee, J. K., Lee, K. T., & Jang, K.-T. (2013). A prospective, comparative trial to optimize sampling techniques in EUS-guided FNA of solid pancreatic masses. Gastrointestinal Endoscopy, 77(5), 745-751.
Lee, W. S., Choi, H. S., & Sohn, S. Y. (2018). Forecasting new product diffusion using both patent citation and web search traffic. PloS One, 13(4), e0194723.
Lee, Y., & Fong, E. A. (2020). Patent Life Cycle management strategies in open innovation projects. Drug Discovery Today, 25(10), 1782-1785.
Letaief, K. B., Chen, W., Shi, Y., Zhang, J., & Zhang, Y.-J. A. (2019). The roadmap to 6G: AI empowered wireless networks. IEEE Communications Magazine, 57(8), 84-90.
Li, L., Boudreau, D., Paiement, R., Labbe, I., Patenaude, F., Chahine, P., Wang, M., & Brouillette, P. (2017). A cloud-based spectrum environment awareness system. IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, 1-6.
Li, X., Xie, Q., Daim, T., & Huang, L. (2019). Forecasting technology trends using text mining of the gaps between science and technology: The case of perovskite solar cell technology. Technological Forecasting and Social Change, 146, 432-449.
Lim, D.-J., Anderson, T. R., & Kim, J. (2012). Forecast of wireless communication technology: A comparative study of regression and TFDEA Model. 2012 Proceedings of PICMET'12: Technology Management for Emerging Technologies, 1247-1253.
Lim, D.-J., Runde, N., & Anderson, T. R. (2013). Applying technology forecasting to new product development target setting of LCD panels. In Advances in Business and Management Forecasting, 137-152.
Lin, D., Liu, W., Guo, Y., & Meyer, M. (2021). Using technological entropy to identify technology life cycle. Journal of Informetrics, 15(2), 101137.
Little, A. D. (1981). The Strategic Management of Technology. Cambridge, M.A.: Academic Press.
Liu, G., & Jiang, D. (2016). 5G: Vision and requirements for mobile communication system towards year 2020. Chinese Journal of Engineering, 2016(2016), 8.
Lu, Y., & Zheng, X. (2020). 6G: A survey on technologies, scenarios, challenges, and the related issues. Journal of Industrial Information Integration, 100158.
Mao, Y., Ai, H., Chen, Y., Zhang, Z., Zeng, P., Kang, L., ... & Li, H. (2018). Phytoplankton response to polystyrene microplastics: perspective from an entire growth period. Chemosphere, 208, 59-68.
Martino, J. P. (2003). A review of selected recent advances in technological forecasting. Technological Forecasting and Social Change, 70(8), 719-733.
Mehta, H., Patel, D., Joshi, B., & Modi, H. (2014). 0G to 5G mobile technology: A survey. Journal of Basic and Applied Scientific Research, 5, 56-60.
Mondal, S., Sinha, A., & Routh, J. (2015). A survey on evolution of wireless generations 0G to 7G. International Journal of Advance Research in Science and Engineering, 1(2), 5-10.
Nguyen, R., Singh, S. K., & Rai, R. (2023). FuzzyGAN: Fuzzy generative adversarial networks for regression tasks. Neurocomputing, 525, 88-110.
Norton, J. A., & Bass, F. M. (1987). A diffusion theory model of adoption and substitution for successive generations of high-technology products. Management Science, 33(9), 1069-1086.
Ong, C.-S., Huang, J.-J., & Tzeng, G.-H. (2005). Model identification of ARIMA family using genetic algorithms. Applied Mathematics and Computation, 164(3), 885-912.
Patel, S., Chauhan, M., & Kapadiya, K. (2012). 5G: Future mobile technology-vision 2020. International Journal of Computer Applications, 54(17), 6-10.
Patil, C. S., Karhe, R. R., & Aher, M. A. (2012). Development of mobile technology: a survey. International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering, 1(5), 374-379.
Penttinen, H., Saarto, T., Kellokumpu‐Lehtinen, P., Blomqvist, C., Huovinen, R., Kautiainen, H., Järvenpää, S., Nikander, R., Idman, I., & Luoto, R. (2011). Quality of life and physical performance and activity of breast cancer patients after adjuvant treatments. Psycho‐Oncology, 20(11), 1211-1220.
Phillips, P. C., & Su, L. (2011). Non‐parametric regression under location shifts. The Econometrics Journal, 14(3), 457-486.
Porter, M. E. (1980). Competitive strategy: Techniques for Analyzing Industries and Competitors. New York, N.Y.: Free Press.
Putka, D. J., Beatty, A. S., & Reeder, M. C. (2018). Modern prediction methods: New perspectives on a common problem. Organizational Research Methods, 21(3), 689-732.
Rappaport, T. S., Sun, S., Mayzus, R., Zhao, H., Azar, Y., Wang, K., ... & Gutierrez, F. (2013). Millimeter wave mobile communications for 5G cellular: It will work!. IEEE access, 1, 335-349.
Redden, D. T., & Woodall, W. H. (1994). Properties of certain fuzzy linear regression methods. Fuzzy Sets and Systems, 64(3), 361-375.
Saad, W., Bennis, M., & Chen, M. (2019). A vision of 6G wireless systems: Applications, trends, technologies, and open research problems. IEEE Network, 34(3), 134-142.
Sakawa, M., & Yano, H. (1992). Multiobjective fuzzy linear regression analysis for fuzzy input-output data. Fuzzy Sets and Systems, 47(2), 173-181.
Sampaio, P. G. V., González, M. O. A., de Vasconcelos, R. M., dos Santos, M. A. T., de Toledo, J. C., & Pereira, J. P. P. (2018). Photovoltaic technologies: Mapping from patent analysis. Renewable and Sustainable Energy Reviews, 93, 215-224.
Sarip, A. G., Hafez, M. B., & Daud, M. N. (2016). Application of fuzzy regression model for real estate price prediction. Malaysian Journal of Computer Science, 29(1), 15-27.
Savale, P. A. (2020). A comparative study of 1g to 5g generations in the wireless mobile technology: A review. Advances in Computer Science and Information Technology, 7.
Shen, Y. C., Chang, S. H., Lin, G. T., & Yu, H. C. (2010). A hybrid selection model for emerging technology. Technological Forecasting and Social Change, 77(1), 151-166.
Słupianek, A., Dolzblasz, A., & Sokołowska, K. (2021). Xylem parenchyma—role and relevance in wood functioning in trees. Plants, 10(6), 1247.
Solomon, R., Sandborn, P. A., & Pecht, M. G. (2000). Electronic part life cycle concepts and obsolescence forecasting. IEEE Transactions on Components and Packaging Technologies, 23(4), 707-717.
Song, H. J., & Nagatsuma, T. (2011). Present and future of terahertz communications. IEEE transactions on terahertz science and technology, 1(1), 256-263.
Sood, R., & Garg, A. (2014). Digital society from 1G to 5G: a comparative study. International Journal of Application or Innovation in Engineering & Management, 3(2), 186-193.
Spatar, D., Amini, M., Bahrini, S., al Mallak, M., & Tamimi, S. (2012, July). TFDEA application for solar industry. 2012 Proceedings of PICMET'12: Technology Management for Emerging Technologies (pp. 1254-1259). New York, N.Y.: IEEE.
Sprouffske, K., & Wagner, A. (2016). Growthcurver: an R package for obtaining interpretable metrics from microbial growth curves. BMC Bioinformatics, 17, 1-4.
Steenkamp, J. B. E., & Maydeu-Olivares, A. (2021). An updated paradigm for evaluating measurement invariance incorporating common method variance and its assessment. Journal of the Academy of Marketing Science, 49, 5-29.
Straub Jr, D. W., & Wetherbe, J. C. (1989). Information technologies for the 1990s: An organizational impact perspective. Communications of the ACM, 32(11), 1328-1339.
Swamy, A. (2022). Advance Cellular Networks (4G, 5G, 6G). International Journal of Health Sciences, 6(S2), 10955-10966.
Tanaka, H. (1987). Fuzzy data analysis by possibilistic linear models. Fuzzy Sets and Systems, 24(3), 363-375.
Tanaka, H. (1992). Possibilistic regression analysis based on linear programming. Fuzzy Regression Analysis, 12, 845-846.
Tanaka, H., Hayashi, I., & Watada, J. (1989). Possibilistic linear regression analysis for fuzzy data. European Journal of Operational Research, 40(3), 389-396.
Tanaka, H., & Lee, H. (1998). Interval regression analysis by quadratic programming approach. IEEE Transactions on Fuzzy Systems, 6(4), 473-481.
Thangaratinam, S., & Redman, C. W. (2005). The delphi technique. The Obstetrician & Gynaecologist, 7(2), 120-125.
Tsaur, R.-C. (2002). Hybrid forecasting model for Patent Life Cycle. Journal of the Chinese Institute of Industrial Engineers, 19(5), 1-8.
Tseng, F.-M., Tzeng, G.-H., & Yu, H.-C. (1999). Fuzzy seasonal time series for forecasting the production value of the mechanical industry in Taiwan. Technological Forecasting and Social Change, 60(3), 263-273.
Tseng, F.-M., Yu, H.-C., & Tzeng, G.-H. (2001). Applied hybrid grey model to forecast seasonal time series. Technological Forecasting and Social Change, 67(2-3), 291-302.
Tseng, Y.-H., Durbin, P., & Tzeng, G.-H. (2001). Using a fuzzy piecewise regression analysis to predict the nonlinear time-series of turbulent flows with automatic change-point detection. Flow, Turbulence and Combustion, 67(2), 81-106.
Uhm, D., Ryu, J. B., & Jun, S. (2017). An interval estimation method of patent keyword data for sustainable technology forecasting. Sustainability, 9(11), 2025.
Wang, B., Liu, Y., Zhou, Y., & Wen, Z. (2018). Emerging nanogenerator technology in China: A review and forecast using integrating bibliometrics, patent analysis and technology roadmapping methods. Nano Energy, 46, 322-330.
Wang, P., Cockburn, l. M., & Puterman, M. L. (1998). Analysis of patent data—a mixed-Poisson-regression-model approach. Journal of Business & Economic Statistics, 16(1), 27-41.
Wang, R., & Wang, J. (2020). Risk analysis of out-drum mixing cement solidification by HAZOP and risk matrix. Annals of Nuclear Energy, 147, 107679.
Wiley, J. F. (2014). Growth Curve Analysis and Visualization Using R. Journal of Statistical Software, 58, 1-3.
Wissema, J. G. (1982). Trends in technology forecasting. R&D Management, 12(1), 27-36.
Yoon, J., Seo, W., Coh, B.-Y., Song, I., & Lee, J.-M. (2017). Identifying product opportunities using collaborative filtering-based patent analysis. Computers & Industrial Engineering, 107, 376-387.
Yu, J.-R., Tzeng, G.-H., & Li, H.-L. (1999). A general piecewise necessity regression analysis based on linear programming. Fuzzy Sets and Systems, 105(3), 429-436.
Yu, J.-R., Tzeng, G.-H., & Li, H.-L. (2001). General fuzzy piecewise regression analysis with automatic change-point detection. Fuzzy Sets and Systems, 119(2), 247-257.
Yu, J. R., & Tseng, F. M. (2016). Fuzzy piecewise logistic growth model for innovation diffusion: A case study of the TV industry. International Journal of Fuzzy Systems, 18, 511-522.
Zadeh, L. (1999). Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets Systems, 100, 9-34.
Zeinalnezhad, M., Chofreh, A. G., Goni, F. A., & Klemeš, J. J. (2020). Air pollution prediction using semi-experimental regression model and Adaptive Neuro-Fuzzy Inference System. Journal of Cleaner Production, 261, 121218.
Zeqiri, R., Idrizi, F., & Halimi, H. (2019, October). Comparison of Algorithms and Technologies 2G, 3G, 4G and 5G. 2019 3rd International Symposium on Multidisciplinary Studies and Innovative Technologies (pp. 1-4). Ankara, Turkey: IEEE.
Zhang, H., Daim, T., & Zhang, Y. P. (2021). Integrating patent analysis into technology roadmapping: A latent dirichlet allocation based technology assessment and roadmapping in the field of Blockchain. Technological Forecasting and Social Change, 167, 120729.
Zhao, J. (2019). A survey of intelligent reflecting surfaces (IRSs): Towards 6G wireless communication networks. arXiv preprint arXiv, 1907, 04789.