簡易檢索 / 詳目顯示

研究生: 曾建凱
Tseng, Cheng-Kai
論文名稱: 應用於樓梯偵測與攀爬之主動式履帶機器人開發
Applications of Staircase Detection and Stair Climbing for An Autonomous Tracked Robot
指導教授: 王偉彥
Wang, Wei-Yen
黃政吉
Huang, Jeng-Ji
學位類別: 碩士
Master
系所名稱: 工業教育學系
Department of Industrial Education
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 99
中文關鍵詞: 履帶式機器人Kinect感測器樓梯攀爬系統模糊控制
論文種類: 學術論文
相關次數: 點閱:266下載:14
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 目前自主式移動機器人種類與功能越來越多樣化,本文主要強調自製履帶式機器人的功能與實用性。我們所提出的履帶式機器人能夠在未知環境或是崎嶇不平的路面上自主地於樓梯和斜坡移動。目前大部份智慧型機器人在未知環境中尋找目標物或辨識物體需靠CCD去辨識,然而在顏色複雜環境下會導致辨識效果大幅度降底,本論文藉由Kinect感測器讀取目標物的深度資訊進行不同類型的路面辨識。此外,針對一般具樓梯通道大樓,為了要有效完成大樓的巡邏,本論文設計四種動作模式以解決機器人上下樓梯的問題,模式包含了探索模式、對準模式、計算傾斜角度模式與攀爬模式。為了履帶式機器人在探索模式中能更平滑朝著樓梯前進,本文使用模糊控制器於探索模式中,藉由專家知識來定義左履帶與右履帶轉速之輸出,達到較平滑路徑之行走。最後,利用在未知環境中搜尋樓梯並完成上下樓梯的實驗來驗證本篇論文所提出智慧型機器人之行為模式與方法的有效性。

    中文摘要 i 英文摘要 ii 致謝 iii 目錄 iv 表目錄 vii 圖目錄 viii 第一章  緒論 1 1.1前言 1 1.2研究目的與文獻探討 2 1.3論文架構 7 第二章  履帶式機器人之軟、硬體系統架構與設計 8 2.1機器人機構 8 2.1.1 機器人履帶膠塊 10 2.2 馬達動力系統 11 2.2.1 馬達驅動器 11 2.2.2 馬達規格配置 13 2.2.3 馬達控制系統 14 2.3 馬達程式設計 14 2.4 電源系統 19 2.5 Kinect感測器 20 2.5.1 Kinect馬達 21 2.5.2 Kinect深度感測器與RGB視訊攝影機 22 2.5.3 Kinect電源系統 23 2.6 紅外線測距儀 24 2.7 OpenNI的架構設定 27 第三章  模糊控制 29 3.1 模糊控制之理論背景 29 3.2 模糊控制器基本架構 30 3.3 模糊化之策略 30 3.4 模糊推論引擎 32 3.5 模糊知識庫 33 3.6 去模糊化 34 第四章  履帶式機器人行為模式之設計 35 4.1履帶式機器人上樓梯模式設計 35 4.1.1 探索模式設計-上樓梯 36 4.1.1.1階段式探索模式 41 4.1.1.2 模糊控制之智慧型探索模式 42 4.1.2 對準模式設計-上樓梯 43 4.1.3 計算傾斜角度模式設計-上樓梯 45 4.1.4 攀爬模式設計-上樓梯 49 4.1.4.1攀爬前準備動作設計 49 4.1.4.2攀爬中對準樓梯機制設計 50 4.1.4.3攀登樓梯設計 52 4.2履帶式機器人下樓梯模式設計 53 4.2.1探索模式設計-下樓梯 54 4.2.2對準模式設計-下樓梯 54 4.2.3計算傾斜角度模式設計-下樓梯 55 4.2.4下樓梯模式設計 55 4.2.4.1 下樓梯前準備動作設計 56 4.2.4.2 下樓梯之對準樓梯機制設計 57 4.2.4.3 下樓梯設計 57 第五章  實驗結果與討論 59 5.1履帶式機器人上樓梯實驗 59 5.1.1探索模式實驗 62 5.1.1.1 階段式探索模式實驗 63 5.1.1.2 模糊控制之智慧型探索模式實驗 66 5.1.2對準模式實驗 70 5.1.3計算傾斜角度實驗 72 5.1.4攀爬模式實驗 73 5.2履帶式機器人下樓梯實驗 76 5.2.1探索模式實驗 78 5.2.2對準模式實驗 79 5.2.3計算傾斜角度實驗 80 5.2.4下樓梯實驗 81 5.3不同環境背景之實驗結果 88 5.3.1不同規格之樓梯 88 5.4夜間實驗 90 第六章  結論與未來展望 93 6.1 結論 93 6.2 未來展望 94 參考文獻 95 自傳 99

    [1] B. Wei, J.Gao, K. Li, and H. Chen, “Navigation and slope detection system design for autonomous mobile robot,”Proc.of the Ninth International Conference on Electronic Measurement & Instruments,2009, pp.4-654-4-658.
    [2] J. Carlson and R. R. Murphy, “How ugvs physically fail in the field,” IEEE Trans.on Robotics, vol. 21, no. 3, pp. 423-437, June 2005.
    [3] J. A. Hesch, G. L. Mariottini, and S. I. Roumeliotis, “Descending-stair detection, approach, and traversal with an autonomous tracked vehicle,” IEEE/RSJ International Conference on Intelligent Robots and Systems, Taipei, Taiwn, Oct. 2010, pp.18-22.
    [4] Z.-G. Hou, A.-M. Zou, L. Cheng, and M. Tan, “Adaptive control of an electrically driven nonholonomic mobile robot via backstepping and fuzzy approach,” IEEE Trans. on Control Systems Technology, vol. 17, no. 4, pp. 803-815, July 2009.
    [5] P. J. Lewis, N. Flann, M. R. Torrie, E. A. Poulson, T. Petroff, and G. Witus, “Chaos an intelligent ultra-mobile sugv: combining the mobility of wheels, tracks, and legs,” Proc. of the SPIE, vol. 5804, pp. 427-438, 2005.
    [6] P. Biber, S. Fleck, and T. Duckett, “3D modeling of indoor environments for a robotic security guard,” Proc. of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05), 2005.
    [7] J. N. K. Liu, M. Wang, and B. Feng, “’Ibotguard: an internet-based intelligent robot security system using invariant face recognition against intruder,” IEEE Trans. on Systems, Man, and Cybernetics-Part C: Applications and Reviews, vol. 35, no. 1, Feb. 2005.
    [8] I. Vincent and Q. Sun, “A combined reactive and reinforcement learning controller for an autonomous tracked vehicle,” Robotics and Autonomous Systems 60, pp. 599-608, 2012.
    [9] A. I. Mourikis, N. Trawny, S. I. Roumeliotis, D. M. Helmick, and L. Matthies, “Autonomous stair climbing for tracked vehicles,” International Journal of Robotics Research, vol. 26, no. 7, pp. 737-758, July 2007.
    [10] Y. Li, C. Li, and P. Chen, “Research and design of control system for a tracked sar robot under coal mine,” Proc. of the IEEE International Conference on Automation and Logistics Shenyang, China, Aug. 2009, pp. 1957-1961.
    [11] H.H. Zhao, X.G. Duan, and G. Yang, “Kinematics and dynamics modeling of a small mobile robot with tracked locomotion mode,” Proc. of the IEEE International Conference on Robotics and Biomimetics, Tianjin, China, Dec.2010, pp. 14-18.
    [12] H.Y. Liu, W.J. Wang, and R.-J. Wang, “A course in simulation and demonstration of humanoid robot motion,” IEEE Trans. on Education, vol. 54, no. 2, pp. 255-262, May 2011.
    [13] D. Liu, L. Shen, Y. Yin, and X. Li, “How to recognize facial images with spectacles,” Proc. of the 6th World Congress on Intelligent Control and Automation, Dalian, China, June 2006, pp. 21-23.
    [14] J. Ma and F. Ren, “Detect and track the dynamic deformation human body with the active shape model modified by motion vectors,” Proc. of IEEE CCIS, 2011, pp. 587-591.
    [15] C. Shen, E. Gill, and W. Huang, “Simulation of hf radar cross sections for swell contaminated seas,” Proc. of the Conference will be published in IEEE Xplore shortly after the conclusion of the conference, 2012, pp. 1-5.
    [16] A. Frías-Velázquez and J. R. Morros, “Gray-scale erosion algorithm based on image bitwise decomposition: application to focal plane processors,” Proc. Of IEEE International Conference on Acoustics, Speech and Signal, Taipei, 2009, pp.845-848.
    [17] K. Khoshelham, “Accuracy analysis of Kinect depth data,” International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, pp. 133-138, 2011.
    [18] R. A. Newcombe, S. Izadi, O. Hilliges, D. Molyneaux, D. Kim, A. J. Davison, P. Kohli, J. Shotton, S. Hodges, and A. Fitzgibbon, “Kinectfusion: real-time dense surface mapping and tracking,” Proc. Of IEEE International Symposium on Mixed and Augmented Reality Science and Technolgy, Basel, Switzerland, Oct. 2011, pp. 26 -29.
    [19] http://store.irobot.com/shop/index.jsp?categoryId=2804605
    [20] http://www.pmc.org.tw/tg_view.aspx?type=Product&TGD_NO=103
    [21] http://lookstory.blogspot.tw/2011/05/blog-post_02.html
    [22] S. A. Stoeterand N. Papanikolopoulos, “Autonomous stair-climbing with miniature jumping robots,” IEEE Trans. on Systems, Man, and Cybernetics-Part B: Cybernetics, vol. 35, no. 2, pp. 313-325, April 2005.
    [23] D. Koh, K. Hyun, and S. Kim, “Design of multi-joint tracked robot for adaptive uneven terrain driving,” Proc. of the 4th International Conference on Autonomous Robots and Agents, Wellington, New Zealand, Feb 10-12, 2009, pp. 464-468.
    [24] Y. Cong, X. Li, J. Liu, and Y. Tang, “A stairway detection algorithm based on vision for ugv stair climbing,”IEEE International Conference on Networking Sensing and Control, Sanya, April 2008, pp. 1806-1811.
    [25] Y. Liu and G. Liu, “Track–stair interaction analysis and online tipover prediction for a self-reconfigurable tracked mobile robot climbing stairs,” IEEE/ASME Trans. on Mechatronics, vol. 14, no. 5, pp. 528-538, Oct. 2009.
    [26] A. M. Johnson, M. T. Hale, G. C. Haynes, and D. E. Koditschek, “Autonomous legged hill and stairwell ascent,” Proc. of the IEEE International Symposium on Safety,Security and Rescue Robotics Kyoto, Japan, Nov. 2011, pp. 134-142.
    [27] C. Theeravithayangkura, T. Takubo, Y. Mae, and T. Arai, “Stair recognition with laser range scanning by limb mechanism robot “ASTERISK”,” Proc. of the IEEE International Conference on Robotics and Biomimetics Bangkok, Thailand, Feb. 2009, pp. 915-920.
    [28] 謝慶耀,履帶型自走車之設計與實現,國立台北科技大學自動化科技研究所碩士論文,2010。
    [29] http://www.1111motor.com/download/SLIM111009.pdf
    [30] http://www.computerhope.com/msdos.htm
    [31] www.jameco.com/webapp/wcs/stores/servlet/Product_10001_10001_2105164_-1
    [32] http://zh.wikipedia.org/wiki/Kinect
    [33] http://www.robofun.net/forum/viewthread.php?tid=1044
    [34] http://sharp-world.com/products/device/lineup/data/pdf/datasheet/gp2y0a02_e.pdf
    [35] http://sine.ni.com/nips/cds/view/p/lang/zht/nid/203223
    [36] http://kheresy.wordpress.com/2011/01/19/openni_1st/
    [37] http://t17.techbang.com/topics/4933-operation-with-the-kinect-pc-play-games-view-photos-play-presentation?mode=print&page=1
    [38] L. A. Zadeh, “Fuzzy sets,” Information and control 8, 1965, pp. 338-353.
    [39] 陳建淳,自適應模糊控制器應用於兩輪車輛之平衡控制,銘傳大學電子工程學系碩士論文,2011。
    [40] 林彥宏,基於互補式可變結構理論的虛擬PID控制器設計及其FPGA的實現,國立雲林科技大學電機工程系碩士論文,2003。
    [41] 方乃宏,基於Kinect感測器之智慧型履帶機械人於未知坡道環境行走設計,國立臺灣師範大學應用電子科技學系碩士論文,2012。
    [42] 蕭朝維,應用情境感知及模糊理論於智慧型推薦系統-以個人化的廣告推薦為例,朝陽科技大學資訊管理系碩士論文,2012。
    [43] http://laws.mywoo.com/4/17/1016/9.html

    下載圖示
    QR CODE