簡易檢索 / 詳目顯示

研究生: 孫裕凱
Yu-Kai SUN
論文名稱: 陽極處理法製備二氧化鈦奈米管應用於正照光式染料敏化太陽能電池之研究
Growth of Titanium Oxide Nanotubes Structure applications in Front side illumination type Dye-Sensitized Solar Cells by using Electrochemical method
指導教授: 郭金國
Kuo, Chin-Guo
學位類別: 碩士
Master
系所名稱: 工業教育學系
Department of Industrial Education
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 74
中文關鍵詞: 染料敏化太陽能電池二氧化鈦奈米管電化學陽極處理法正照光正丁氧基鈦
英文關鍵詞: Dye-sensitized solar cells, TiO2 nanotubes, Electrochemical method, Front side illumination, Titanium(IV) n-butoxide
論文種類: 學術論文
相關次數: 點閱:166下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究將以一次、二次電化學陽極處理法製備二氧化鈦奈米管薄膜,運用於正照光式的染料敏化太陽能電池之中。過程中將以純度鈦薄板(99.7%)作為陽極;鉑(Pt)為陰極為陰極,浸泡在氟化銨(Ammonium Fluoride, NH4F) 溶質及過氧化氫(Hydrogen peroxide, H2O2)、乙二醇(Ethylene Glycol, EG)溶劑所調配之電解液中,並提供一個穩定電壓,進而促成二氧化鈦奈米管生長,實驗的變因為時間,以小時為單位,研究陽極處理的時間長短對於管長的影響,而二次陽極處理的部分,主要為成長非晶結構後利用選擇性溶液溶解界面,得到可透光的二氧化鈦薄膜,再運用薄膜轉移法製備出正照光型式的染料敏化太陽能電池,運用不同照光的型式,探討其對於染料敏化太陽能電池光電轉換效率之影響。
    本研究製備出的正照光式染料敏化太陽能電池使用N719染料為染料光敏化劑,入射光強度為100 mW/cm2情況下,當管長為31.1 μm時,其短路電流Jsc為13.2 mA/cm2、開路電壓Voc為0.73 V、填充因子FF為0.65、光電轉換效率η為6.31%,如再利用Titanium(IV) n-butoxide (TnB)增加二氧化鈦奈米管面積後,因染料吸附增加,開路電壓Voc、短路電流Jsc提升,光電轉換效η更可高達7.13%,為目前實驗測得最高效率之結果。

    In this study, the major purpose is to apply the first step and second step electrochemical method prepared of titanium dioxide nanotubes films in the front side of illumination-type dye-sensitized solar cells.
    To produce TiO2 nanotube, we conducted the experiment through electrochemical method by using high purity titanium (99.7%) as anode and platinum as cathode. The electrolyte is a mixed solution, which is a kind of electrolyte consisting of Ammonium fluoride (NH4F), Hydrogen peroxide (H2O2) and Ethylene glycol (EG).
    During the experiment, our variable parameter is time, and we use hour as a unit. We observed how the different parameters affect the length of nanotubes. As for the second step electrochemical method treatment, it primarily grows to amorphous structure. Afterwards, we use selective solution to dissolute its interface. Then we can obtain a transparent titanium dioxide film. Finally, we use the transfer approach film to form a prepared front side illumination type of dye-sensitized solar cells. We use the different illumination parameters to study on how the exposure effects on the conversion efficiency of dye-sensitized solar cells photovoltaic.
    In this study, we sensitized the anode with N719 dye and exposed it to the light. The intensity of the light is 100 mW/cm2, and property of the light is 31.1 μm long with Jsc = 13.2 mA/cm2, Voc = 0.73 V, FF = 0.65, η = 6.31%. Furthermore, if we increase the area of TiO2 nanotubes by Titanium(IV) n-butoxide, the open circuit voltage (Voc) and short circuit current density (Jsc) can be increased to a higher level; especially the photoelectric conversion efficiency η can be increased to 7.13%, which is measured the highest photoelectric conversion efficiency.

    中文摘要………………………………………………………………I 英文摘要………………………………………………………………II 誌謝……………………………………………………………………III 目錄……………………………………………………………………IV 圖目錄…………………………………………………………………VII 表目錄…………………………………………………………………X 第一章 緒論…………………………………………………………1 1.1 前言…………………………………………………………1 1.2 太陽能電池技術發展………………………………………2 1.2.1 太陽能電池發展現況和趨勢……………………4 1.3 研究動機及目的……………………………………………6 第二章 理論背景與文獻探討………………………………………8 2.1 光電化學太陽能電池簡介…………………………………8 2.2 二氧化鈦簡介………………………………………………8 2.3 染料敏化太陽能電池之原理………………………………12 2.4 染料敏化太陽能電池之組成結構…………………………16 2.4.1 多孔性奈米半導體光電極………………………16 2.4.2 陽極處理法製備二氧化鈦奈米管………………18 2.4.3 二氧化鈦奈米管應用於染料敏化太陽能電池…19 2.4.4 染料光敏化劑……………………………………25 2.4.5 平衡電荷之氧化還原電解質……………………27 2.4.6 具催化作用之對電極……………………………30 2.5 染料敏化太陽能電池之效能轉換…………………………32 第三章 實驗方法……………………………………………………34 3.1 實驗步驟圖…………………………………………………34 3.2 實驗材料……………………………………………………35 3.3 實驗步驟……………………………………………………36 3.3.1 試片前處理………………………………………37 3.3.2 一次陽極處理法…………………………………38 3.3.3 熱處理……………………………………………40 3.3.4 二次陽極處理法…………………………………40 3.3.5 脫膜反應…………………………………………41 3.3.6 正照光式染料敏化太陽能電池光陽極製備……41 3.3.7 增加二氧化鈦奈米管比表面積…………………42 3.3.8 染料浸泡…………………………………………43 3.3.9 元件封裝製程……………………………………43 第四章 結果與討論…………………………………………………46 4.1 試片前處理…………………………………………………46 4.2 運用電化學陽極處理法成長二氧化鈦奈米管……………47 4.3 二氧化鈦奈米管微結構分析………………………………49 4.4 改變持續電壓時間為實驗參數製備二氧化鈦奈米管……53 4.5 二氧化鈦奈米管XRD檢測分析……………………………56 4.6 轉移二氧化鈦薄膜…………………………………………57 4.7 增加二氧化鈦奈米管比表面積……………………………59 4.7.1 奈理想二氧化鈦奈米粒子沉積計算……………60 4.8 二氧化鈦奈米管於染料吸附後之UV-vis檢測分析………62 4.8.1 TiO2奈米管以不同染料浸泡時間染料吸附檢測分析…62 4.8.2 不同持續電壓時間之TiO2奈米管染料吸附檢測分析…63 4.9 二氧化鈦奈米管應用於染料敏化太陽能之效率影響………64 4.9.1 二氧化鈦奈米管入射光電子轉換效率之探討…………64 4.9.2 不同照光型式染料敏化太陽能電池光電流-電壓曲…65 第五章 結論……………………………………………………………67 參考文獻………………………………………………………………68 -圖目錄- 圖1-1 全球各地區每年太陽電能的情況發展(MW)………………4 圖1-2 全球可再生能源消費量比例估計…………………………5 圖1-3 太陽電池的種類及效率……………………………………5 圖1-4 各類型太陽能電池效率發展情形…………………………6 圖2-1 不同半導體與水性電解液接觸能帶位置…………………8 圖2-2 Grimes團隊製備長度4.4μm的奈米管……………………10 圖2-3 染料敏化太陽能電池結構…………………………………13 圖2-4 二氧化鈦染料敏化太陽能電池工作原理…………………14 圖2-5 染料敏化太陽能電池光轉換效率路徑……………………15 圖2-6 奈米球與奈米管之電子傳遞路線示意圖…………………17 圖 2-7 奈米管結合奈米球電子傳遞示意圖………………………17 圖2-8 二氧化鈦奈米管應用於染料敏化太陽能電池的方式……18 圖2-9 背照光式染料敏化太陽能電池示意圖(a)…………………20 圖2-10 背照光式染料敏化太陽能電池示意圖(b)…………………20 圖2-11 導電玻璃沉積鈦金屬(a)、陽極處理後(b)退火結晶照片 (c)……………………………………………………………21 圖2-12 正照光式染料敏化太陽能電池示意圖(a)…………………21 圖2-13 正照光式染料敏化太陽能電池示意圖(b)…………………22 圖2-14 轉移二氧化鈦奈米管薄膜……………………………………23 圖2-15 二次陽極處理法取得二氧化鈦奈米管薄膜示意圖…………24 圖2-16 N3、N719及Black dye的染料化學結構式…………………26 圖2-17 N719及Black dye的UV-vis吸收光譜………………………26 圖2-18 MgO塗上TiO2於固態太陽能電池之光電流-電壓特性曲線與 光電轉換效率圖………………………………………………28 圖2-19 標準太陽能電池電壓-電流曲線圖…………………………33 圖3-1 實驗步驟圖……………………………………………………34 圖3-2 實驗流程圖……………………………………………………36 圖3-3 實驗流程示意圖………………………………………………37 圖3-4 電化學處理之示意圖…………………………………………39 圖3-5 熱處理參數曲線圖……………………………………………40 圖3-6 增加二氧化鈦奈米管比表面積………………………………42 圖3-7 元件封裝示意圖………………………………………………45 圖4-1 實驗用鈦片99.7% (a)經過前處理(b)未前處理……………46 圖4-2 陽極處理冷卻水循環機………………………………………47 圖4-3 陽極處理電源供應器…………………………………………48 圖4-4 陽極處理試片放置-陽極鈦鉑、陰極導電金屬……………48 圖4-5 陽極處理完試片………………………………………………49 圖4-6 以氟化銨為電解液製備二氧化鈦奈米管頂部影像(一)……50 圖4-7 以氟化銨為電解液製備二氧化鈦奈米管頂部影像(二)……50 圖4-8 以氟化銨為電解液製備二氧化鈦奈米管頂部影像(三)……51 圖4-9 以氟化銨為電解液製備二氧化鈦奈米管側部影像…………51 圖4-10 二小時電壓持續時間之二氧化鈦奈米管SEM側部影像圖…54 圖4-11 四小時電壓持續時間之二氧化鈦奈米管SEM側部影像圖…54 圖4-12 六小時電壓持續時間之二氧化鈦奈米管SEM側部影像圖…55 圖4-13 八小時電壓持續時間之二氧化鈦奈米管SEM側部影像圖…55 圖4-14 XRD圖譜:二氧化鈦薄膜經過熱處理前後結果……………56 圖4-15 二次陽極處理後用選擇性溶液取下二氧化鈦薄膜1 cm *5 cm(a)、5 cm *5cm(b)………………………………………57 圖4-16 經由異丙醇鈦(Titanium(IV) isopropoxide, TTIP)黏著劑 黏貼二氧化鈦奈米管薄膜於導電玻璃上…………………58 圖4-17 溶劑熱合成法壓力釜………………………………………59 圖4-18 溶劑熱合成法沉積正丁氧基鈦:(a)未處理(b)處理 後……………………………………………………………59 圖4-19 正丁氧基鈦沉積於二氧化鈦奈米管理論機制……………60 圖4-20 二氧化鈦奈米管外管面積計算……………………………60 圖4-21 沉積正丁氧基鈦掃描式電子顯微鏡照片…………………61 圖4-22 計算模擬單位管長沉積的粒子數量………………………61 圖4-23 浸泡染料時間光吸收度之影響……………………………62 圖4-24 不同管長之染料吸附曲線圖………………………………63 圖4-25 最佳參數TiO2奈米管入射光電子轉換效率曲線:(a)未增加 表面積(b)TnB增加比表面積………………………………64 圖4-26 不同照光型式染料敏化太陽能電池之光電流-電壓曲線…66 -表目錄- 表1-1 太陽能電池技術發展年表…………………………………2 表2-1 三種TiO2晶體結構之物理性質……………………………9 表2-2 二氧化鈦奈米管式染料敏化太陽能電池研究現…………18 表2-3 各類電解質優缺點…………………………………………27 表3-1 本實驗所使用材料規格……………………………………35 表3-2 一次陽極處理法實驗參數…………………………………39 表3-3 二次陽極處理法實驗參數…………………………………40 表3-4 染料浸泡參數設計…………………………………………43 表3-5 電解質濃度參數設計………………………………………44 表4-1 以氟化銨為電解液製備二氧化鈦奈米管參數……………52 表4-2 陽極處理法實驗參數設計與結果…………………………53 表4-3 二次陽極處理實驗參數……………………………………57 表4-4 不同照光型式染料敏化太陽能電池之元件效率…………64

    [1] Gevorkian, P. (2007). Sustainable Energy System Engineering: The Complete Green Building Design Resource. McGraw Hill Professional.
    [2] Hertz, H. (1887). Ueber einen Einfluss des ultravioletten Lichtes auf die electrische Entladung. Annalen der Physik, 267(8), 983-1000.
    [3] Einstein, A. (1905). The Photoelectric Effect. Ann. Phys, 17, 132.
    [4] Tsokos, K. A. (2010). Physics for the IB Diploma Full Colour. Cambridge University Press.
    [5] B. O’Regan, M. Grätzel. (1991). A low-cost, high-efficiency solar cell based on dye-sensitized. nature, 353, 737-740.
    [6] Chiba, Y., Islam, A., Watanabe, Y., Komiya, R., Koide, N., & Han, L. (2006). Dye-sensitized solar cells with conversion efficiency of 11.1%. Japanese Journal of Applied Physics, 45(7L), L638.
    [7] L. Kazmerski, National Renewable Energy Laboratory.
    [8] Masson, G., Latour, M., & Biancardi, D. (2012). Global market outlook for photovoltaics until 2016. European Photovoltaic Industry Association.
    [9] Sawin, J. L. (2013). RENEWABLES 2013 GLOBAL STATUS REPORT.
    [10] Green, M. A., Emery, K., Hishikawa, Y., Warta, W., & Dunlop, E. D. (2014). Solar cell efficiency tables (version 43). Progress in photovoltaics: research and applications, 22(1), 1-9.
    [11] Grätzel, M. (2001). Photoelectrochemical cells. Nature, 414(6861), 338-344.
    [12] Diebold, U. (2003). The surface science of titanium dioxide. Surface science reports, 48(5), 53-229.
    [13] Madhusudan Reddy, K., Manorama, S. V., & Ramachandra Reddy, A. (2003). Bandgap studies on anatase titanium dioxide nanoparticles. Materials Chemistry and Physics, 78(1), 239-245.
    [14] Nagaveni, K., Hegde, M. S., Ravishankar, N., Subbanna, G. N., & Madras, G. (2004). Synthesis and structure of nanocrystalline TiO2 with lower band gap showing high photocatalytic activity. Langmuir, 20(7), 2900-2907.
    [15] Gong, D., Grimes, C. A., Varghese, O. K., Hu, W., Singh, R. S., Chen, Z., & Dickey, E. C. (2001). Titanium oxide nanotube arrays prepared by anodic oxidation. Journal of Materials Research, 16(12), 3331-3334.
    [16] Mor, G. K., Varghese, O. K., Paulose, M., Shankar, K., & Grimes, C. A. (2006). A review on highly ordered, vertically oriented TiO2 nanotube arrays: Fabrication, material properties, and solar energy applications. Solar Energy Materials and Solar Cells, 90(14), 2011-2075.
    [17] R. Colin Johnson,“氧化鈦奈米管可望降低太陽能電池成本”,電子工程專輯報,2006年3月17日
    [18] Grätzel, M. (2004). Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells. Journal of Photochemistry and Photobiology A: Chemistry, 164(1), 3-14.
    [19] Nakade, S., Kanzaki, T., Kubo, W., Kitamura, T., Wada, Y., & Yanagida, S. (2005). Role of electrolytes on charge recombination in dye-sensitized tio2 solar cell (1): the case of solar cells using the I-/I3-redox couple. The Journal of Physical Chemistry B, 109(8), 3480-3487.
    [20] Thavasi, V., Renugopalakrishnan, V., Jose, R., & Ramakrishna, S. (2009). Controlled electron injection and transport at materials interfaces in dye sensitized solar cells. Materials Science and Engineering: R: Reports, 63(3), 81-99.
    [21] Zuobao, Y., Dengyu, P., Chen, X., Jinghui, L., Jianwei, S., Fei, X., & Zhongquan, M. (2013). Surfactant-assisted nanocrystal filling of TiO2 nanotube arrays for dye-sensitized solar cells with improved performance. Journal of Power Sources. 236(2013), 10-16.
    [22] Wang, H., Yip, C. T., Cheung, K. Y., Djuriši, A. B., Xie, M. H., Leung, Y. H., & Chan, W. K. (2006). Titania-nanotube-array-based photovoltaic cells. Applied physics letters, 89(2), 023508.
    [23] Zhu, K., Neale, N. R., Miedaner, A., & Frank, A. J. (2007). Enhanced charge-collection efficiencies and light scattering in dye-sensitized solar cells using oriented TiO2 nanotubes arrays. Nano Letters, 7(1), 69-74.
    [24] Paulose, M., Shankar, K., Varghese, O. K., Mor, G. K., Hardin, B., & Grimes, C. A. (2006). Backside illuminated dye-sensitized solar cells based on titania nanotube array electrodes. Nanotechnology, 17(5), 1446.
    [25] Lin, C. J., Yu, W. Y., & Chien, S. H. (2008). Rough conical-shaped TiO 2-nanotube arrays for flexible backilluminated dye-sensitized solar cells. Applied Physics Letters, 93(13), 133107-133107.
    [26] Chen, C. C., Chung, H. W., Chen, C. H., Lu, H. P., Lan, C. M., Chen, S. F., & Diau, E. W. G. (2008). Fabrication and characterization of anodic titanium oxide nanotube arrays of controlled length for highly efficient dye-sensitized solar cells. The Journal of Physical Chemistry C, 112(48), 19151-19157.
    [27] HyeokáPark, J., & GuáKang, M. (2008). Growth, detachment and transfer of highly-ordered TiO2 nanotube arrays: use in dye-sensitized solar cells. Chemical Communications, (25), 2867-2869.
    [28] Paulose, M., Shankar, K., Varghese, O. K., Mor, G. K., & Grimes, C. A. (2006). Application of highly-ordered TiO2 nanotube-arrays in heterojunction dye-sensitized solar cells. Journal of Physics D: Applied Physics, 39(12), 2498.
    [29] Chen, Q., & Xu, D. (2009). Large-scale, noncurling, and free-standing crystallized TiO2 nanotube arrays for dye-sensitized solar cells. The Journal of Physical Chemistry C, 113, 6310-6314.
    [30] Nazeeruddin, M. K., Humphry-Baker, R., Liska, P., & Grätzel, M. (2003). Investigation of sensitizer adsorption and the influence of protons on current and voltage of a dye-sensitized nanocrystalline TiO2 solar cell. The Journal of Physical Chemistry B, 107(34), 8981-8987.
    [31] Grätzel, M. (1999). Mesoporous oxide junctions and nanostructured solar cells. Current Opinion in Colloid & Interface Science, 4(4), 314-321.
    [32] Arakawa, H., Sayama, K., Hara, K., Sugihara, H., Yamaguchi, T., Yanagida, M., ... & Takano, S. (2003, May). Improvement of efficiency of dye-sensitized solar cell-optimization of titanium oxide photoelectrode. In Photovoltaic Energy Conversion, 2003. Proceedings of 3rd World Conference on (Vol. 1, pp. 19-22).
    [33] Franco, G., Gehring, J., Peter, L. M., Ponomarev, E. A., & Uhlendorf, I. (1999). Frequency-resolved optical detection of photoinjected electrons in dye-sensitized nanocrystalline photovoltaic cells. The Journal of Physical Chemistry B, 103(4), 692-698.
    [34] Gregg, B. A., Pichot, F., Ferrere, S., & Fields, C. L. (2001). Interfacial recombination processes in dye-sensitized solar cells and methods to passivate the interfaces. The Journal of Physical Chemistry B, 105(7), 1422-1429.
    [35] Wang, P., Zakeeruddin, S. M., Humphry‐Baker, R., Moser, J. E., & Grätzel, M. (2003). Molecular‐Scale Interface Engineering of TiO2 Nanocrystals: Improve the Efficiency and Stability of Dye‐Sensitized Solar Cells. Advanced Materials, 15(24), 2101-2104.
    [36] Kumara, G. R. A., Kaneko, S., Okuya, M., & Tennakone, K. (2002). Fabrication of dye-sensitized solar cells using triethylamine hydrothiocyanate as a CuI crystal growth inhibitor. Langmuir, 18(26), 10493-10495.
    [37] Meng, Q. B., Takahashi, K., Zhang, X. T., Sutanto, I., Rao, T. N., Sato, O., ... & Uragami, M. (2003). Fabrication of an efficient solid-state dye-sensitized solar cell. Langmuir, 19(9), 3572-3574.
    [38] Kumara, G. R. A., Okuya, M., Murakami, K., Kaneko, S., Jayaweera, V. V., & Tennakone, K. (2004). Dye-sensitized solid-state solar cells made from magnesiumoxide-coated nanocrystalline titanium dioxide films: enhancement of the efficiency. Journal of Photochemistry and Photobiology A: Chemistry, 164(1), 183-185.
    [39] Bach, U., Lupo, D., Comte, P., Moser, J. E., Weissörtel, F., Salbeck, J., ... & Grätzel, M. (1998). Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies. Nature, 395(6702), 583-585.
    [40] Huynh, W. U., Dittmer, J. J., & Alivisatos, A. P. (2002). Hybrid nanorod-polymer solar cells. science, 295(5564), 2425-2427.
    [41] Gebeyehu, D., Brabec, C. J., Sariciftci, N. S., Vangeneugden, D., Kiebooms, R., Vanderzande, D., ... & Schindler, H. (2001). Hybrid solar cells based on dye-sensitized nanoporous TiO2 electrodes and conjugated polymers as hole transport materials. Synthetic Metals, 125(3), 279-287.
    [42] Haridas, K. R., Ostrauskaite, J., Thelakkat, M., Heim, M., Bilke, R., & Haarer, D. (2001). Synthesis of low melting hole conductor systems based on triarylamines and application in dye sensitized solar cells. Synthetic metals, 121(1-3), 1573-1574.
    [43] Kubo, W., Kambe, S., Nakade, S., Kitamura, T., Hanabusa, K., Wada, Y., & Yanagida, S. (2003). Photocurrent-determining processes in quasi-solid-state dye-sensitized solar cells using ionic gel electrolytes. The Journal of Physical Chemistry B, 107(18), 4374-4381.
    [44] Hara, K., Horiguchi, T., Kinoshita, T., Sayama, K., & Arakawa, H. (2001). Influence of electrolytes on the photovoltaic performance of organic dye-sensitized nanocrystalline TiO2 solar cells. Solar Energy Materials and Solar Cells, 70(2), 151-161.
    [45] Huang, S. Y., Schlichthörl, G., Nozik, A. J., Grätzel, M., & Frank, A. J. (1997). Charge recombination in dye-sensitized nanocrystalline TiO2 solar cells. The Journal of Physical Chemistry B, 101(14), 2576-2582.
    [46] 伊艷紅,許澤輝,馮磊碩,楊書廷,李承斌,染料敏化太陽能電池對電極的研究發展,材料報導:綜述篇,第23卷,第5期,2009,第109
    [47] Hamann, T. W., Jensen, R. A., Martinson, A. B., Van Ryswyk, H., & Hupp, J. T. (2008). Advancing beyond current generation dye-sensitized solar cells. Energy & Environmental Science, 1(1), 66-78.
    [48] Ho, S. Y., Su, C., Cheng, C. C., Kathirvel, S., Li, C. Y., & Li, W. R. (2012). Preparation, characterization, and application of titanium nano-tube array in dye-sensitized solar cells. Nanoscale research letters, 7(1), 1-9.
    [49] 陳嘉祥. (2011). 二氧化鈦奈米管陣列之製備及其光電化學的應用. 中央大學化學系學位論文, 1-144.

    下載圖示
    QR CODE