簡易檢索 / 詳目顯示

研究生: 蔡舜璽
Tsai, Shun-Hsi
論文名稱: 阻力訓練強度對於糖尿病前期高齡者血糖調控之影響
Effects of resistance exercise intensity on glycemic control in prediabetes elders
指導教授: 劉宏文
Liu, Hung-Wen
學位類別: 碩士
Master
系所名稱: 體育學系
Department of Physical Education
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 61
中文關鍵詞: 空腹血糖慢性發炎胰島素阻抗身體組成二型糖尿病
英文關鍵詞: fasting glucose, chronic inflammation, insulin resistance, body composition, type 2 diabetes
DOI URL: http://doi.org/10.6345/NTNU202000855
論文種類: 學術論文
相關次數: 點閱:361下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

前言:代謝能力下降,肌肉質量流失、脂肪組織增加及慢性發炎加劇會伴隨老化而產生,進而造成空腹血糖異常或葡萄糖耐受度不佳等問題,增加罹患二型糖尿病之風險。有氧運動的建議處方較多證據支持,然而阻力訓練對於血糖調控仍有不一致的結果。且有文獻指出高強度阻力訓練對高齡族群血糖調控產生不良的影響。此外,較少研究以相同訓練量下,不同強度的阻力訓練進行探討。目的:探討在相同訓練量下,不同阻力訓練強度對於糖尿病前期高齡者的血糖調控、發炎狀態及身體組成之影響。方法:31名糖尿病前期高齡者作為受試者,依身體組成、空腹血糖、口服葡萄糖耐受度測試後2小時血糖配對分派至高強度組 (80%1RM) 16名及低強度組 (40%1RM) 15名受試者。受試者完成10週的阻力訓練,每週訓練三次,每次訓練間隔48小時,使用8項器械式器材進行全身的阻力訓練。訓練前及訓練結束後進行血糖調控、發炎激素及身體組成的測量。以二因子混合設計變異數分析進行統計分析,考驗受試者訓練前後各依變項在組別、時間差異。結果:24位受試者完成10週阻力訓練以及所有檢測 (高強度:13名;低強度:11名)。平均週訓練量兩組無顯著差異 (p > .05);最大肌力進步幅度高強度顯著高於低強度組 (高強度:22% vs. 低強度:12%,p < .05)。血糖調控指標:阻力運動訓練能降低高齡糖尿病前期空腹血糖 (訓練前:104 ± 6 mg/dl;訓練後vs. 100 ± 6 mg/dl,p < .05),其餘指標 (空腹胰島素、HOMA-IR、OGTT 2小時後血糖、OGTT AUC) 訓練前後無顯著差異 (p > .05)。發炎激素:訓練後高強度組TNF-α濃度顯著低於低強度組 (高強度:1.34 ± 0.27 pg/ml vs.低強度:1.51 ± 0.29 pg/ml,p < .05),且同時低於訓練前 (訓練前:1.79 ± 0.47 pg/ml vs.訓練後:1.34 ± 0.27 pg/ml,p < .05),其餘發炎激素 (IL-6、CRP) 則皆無顯著差異 (p > .05)。結論:阻力運動能改善糖尿病前期老年族群的空腹血糖,且高強度組還能降低TNF-α濃度。這些結果顯示阻力運動可能有助於預防或延緩高齡者罹患二型糖尿病。

Introduction: Aging-related disorders, such as loss of muscle mass, obesity and chronic inflammation, may induce insulin resistance and increase risk for prediabetes or type 2 diabetes. Aerobic exercise can effectively improve glycemic control; however, the effect of resistance exercise on glycemic control remains controversial. Few studies have shown that high intensity resistance exercise impaired the glycemic control in elders. In addition, few studies have investigated resistance training with different intensities in the same training volume. Purpose: The present study was to investigate effects of low-intensity versus high-intensity resistance training on glycemic control, markers of inflammation, and body composition in older adults with prediabetes. Methods: 31 older adults with prediabetes were recruited in this study. Participants were matched and assigned in high intensity group (High, n = 16, 80%1RM) or low intensity group (Low, n = 15, 40%1RM). Both groups completed 10 weeks (3-day/week) resistance training. Glycemic control, markers of inflammation, and body composition were performed pre- (PRE) and post-training (POST). Two-way mixed ANOVA was used to analyze the data. Results: 24 participants completed the 10 weeks resistance training and the measurements. No significant difference was observed in a weekly training volume between both groups (p > .05). The improvement of muscle strength in High was significant higher than Low (High: 22% vs. Low: 12%, p < .05). Resistance training reduced fasting glucose levels (PRE: 104 ± 6 mg/dl;vs. POST: 100 ± 6 mg/dl, p < .05). After the training, High significantly lowered TNF-α levels compared with Low (High: 1.34 ± 0.27 pg/ml vs. Low: 1.51 ± 0.29 pg/ml, p < .05) and PRE (PRE: 1.79 ± 0.47 pg/ml vs. POST: 1.34 ± 0.27 pg/ml, p < .05). There were no significant differences in the remaining dependent variables. Conclusions: Resistance training improved fasting glucose in in older adults with prediabetes. Furthermore, only high-intensity resistance training lowered TNF-α levels. These findings underscore the ability of resistance exercise may help prevent or delay type 2 diabetes in older adults.

中文摘要 i 英文摘要 iii 謝誌 v 目次 vi 表次 ix 圖次 ix 第壹章 緒論 1 第一節 研究背景 1 第二節 研究目的 3 第三節 研究假設 3 第四節 名詞操作性定義 3 第五節 研究範圍與限制 4 第六節 研究重要性 4 第貳章 文獻探討 5 第一節 糖尿病前期的定義、致病原因與機轉 5 第二節 阻力訓練對血糖調控之影響 6 第三節 阻力訓練對慢性發炎之影響 11 第四節 本章總結 14 第參章 研究方法 15 第一節 研究對象 15 第二節 實驗時間與地點 15 第三節 實驗流程 16 第四節 測量工具與方法 17 第五節 資料處理及統計分析 23 第肆章 結果 24 第一節 受試者基本資料 24 第二節 平均週訓練量 25 第三節 最大肌力變化量 25 第四節 血糖調控指標 26 第五節 發炎激素 30 第六節 身體組成 32 第伍章 討論 34 第一節 阻力訓練對血糖調控之影響 34 第二節 阻力訓練對發炎激素之影響 35 第三節 阻力訓練對身體組成之影響 37 第四節 結論 39 參考文獻 40 附錄 51 附錄一 51 附錄二 52 附錄三 56 附錄四 59 附錄五 60

內政部(2019)。中華民國人口推估。取自https://ws.ndc.gov.tw/Download.ashx?u=LzAwMS9hZG1pbmlzdHJhdG9yLzEwL3JlbGZpbGUvMC8yODY3L2MyNTIzNTk1LTJiZTMtNDI0Yy05NWQ2LWIxMDk4YTA1N2NhNi5wZGY%3d&n=MTA35bm054mI5Lq65Y%2bj5o6o5Lyw5aCx5ZGKdjkgLWZpbmFsLnBkZg%3d%3d&icon=..pdf

行政院衛生署(2019)。107年國人死因統計結果。取自
https://www.mohw.gov.tw/dl-59699-c6c0c33a-1044-4a4d-9353-1477c815e90a.html

行政院衛生署(2019)。2018國民健康署年報。取自
https://www.hpa.gov.tw/Pages/ashx/File.ashx?FilePath=~/File/Attach/10284/File_11722.pdf

行政院衛生署(2018)。成人健康體位標準。取自
https://www.hpa.gov.tw/Cms/File/Attach/9737/File_9133.pdf

Abdul-Ghani, M. A., Jenkinson, C. P., Richardson, D. K., Tripathy, D., & DeFronzo, R. A. (2006). Insulin secretion and action in subjects with impaired fasting glucose and impaired glucose tolerance: results from the Veterans Administration Genetic Epidemiology Study. Diabetes, 55(5), 1430-1435. doi:10.2337/db05-1200

Alberti, K. G. M. M., & Zimmet, P. Z. (1998). Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: diagnosis and classification of diabetes mellitus. Provisional report of a WHO consultation. Diabetic Medicine, 15(7), 539-553.

American College of Sports Medicine. (2013). ACSM's guidelines for exercise testing and prescription: Lippincott Williams & Wilkins.

American Diabetes Association. (2019). 2. Classification and Diagnosis of Diabetes: Standards of Medical Care in Diabetes-2019. Diabetes Care, 42(Suppl 1), S13-S28. doi:10.2337/dc19-S002

Anty, R., Bekri, S., Luciani, N., Saint-Paul, M.-C., Dahman, M., Iannelli, A., . . . Gual, P. (2006). The Inflammatory C-reactive protein is increased in both liver and adipose tissue in severely obese patients independently from metabolic syndrome, type 2 diabetes, and NASH. American Journal of Gastroenterology, 101(8). doi:10.1111/j.1572-0241.2006.00724.x

Bansal, N. (2015). Prediabetes diagnosis and treatment: A review. World Journal of Diabetes, 6(2), 296-303. doi:10.4239/wjd.v6.i2.296

Bloomer, R. J. (2005). Energy cost of moderate-duration resistance and aerobic exercise. Journal of Strength and Conditioning Research, 19(4), 878-882. doi:10.1519/r-16534.1

Bock, G., Chittilapilly, E., Basu, R., Toffolo, G., Cobelli, C., Chandramouli, V., . . . Rizza, R. A. (2007). Contribution of hepatic and extrahepatic insulin resistance to the pathogenesis of impaired fasting glucose. Diabetes, 56(6), 1703. doi:10.2337/db06-1776

Bodine, S. C. (2006). mTOR signaling and the molecular adaptation to resistance exercise. Medicine and Science in Sports and Exercise, 38(11). doi:10.1249/01.mss.0000233797.24035.35

Bouchard, D. R., Dionne, I. J., & Brochu, M. (2009). Sarcopenic/obesity and physical capacity in older men and women: data from the Nutrition as a Determinant of Successful Aging (NuAge)—the Quebec Longitudinal Study. Obesity, 17(11), 2082-2088. doi:10.1038/oby.2009.109

Brandt, C., & Pedersen, B. K. (2010). The role of exercise-induced myokines in muscle homeostasis and the defense against chronic diseases. Journal of Biomedicine and Biotechnology, 2010. doi:10.1155/2010/520258

Campbell, W. W., Crim, M. C., Young, V. R., & Evans, W. J. (1994). Increased energy requirements and changes in body composition with resistance training in older adults. The American Journal of Clinical Nutrition, 60(2), 167-175. doi:10.1093/ajcn/60.2.167

Cermak, N. M., Res, P. T., de Groot, L. C., Saris, W. H., & Van Loon, L. J. (2012). Protein supplementation augments the adaptive response of skeletal muscle to resistance-type exercise training: a meta-analysis. The American Journal of Clinical Nutrition, 96(6), 1454-1464. doi:10.3945/ajcn.112.037556

Cho, N. H., Shaw, J. E., Karuranga, S., Huang, Y., da Rocha Fernandes, J. D., Ohlrogge, A. W., & Malanda, B. (2018). IDF Diabetes Atlas: Global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Research and Clinical Practice, 138, 271-281. doi:10.1016/j.diabres.2018.02.023

Chodzko-Zajko, W. J., Proctor, D. N., Singh, M. A. F., Minson, C. T., Nigg, C. R., Salem, G. J., & Skinner, J. S. (2009). Exercise and physical activity for older adults. Medicine and Science in Sports and Exercise, 41(7), 1510-1530. doi:10.1249/MSS.0b013e3181a0c95c

Chung, J.-Y., Kang, H.-T., Lee, D.-C., Lee, H.-R., & Lee, Y.-J. (2013). Body composition and its association with cardiometabolic risk factors in the elderly: a focus on sarcopenic obesity. Archives of gerontology and geriatrics, 56(1), 270-278. doi:10.1016/j.archger.2012.09.007

Colberg, S. R., Sigal, R. J., Yardley, J. E., Riddell, M. C., Dunstan, D. W., Dempsey, P. C., . . . Tate, D. F. (2016). Physical Activity/Exercise and Diabetes: A Position Statement of the American Diabetes Association. Diabetes Care, 39(11), 2065. doi:10.2337/dc16-1728

Csapo, R., & Alegre, L. (2016). Effects of resistance training with moderate vs heavy loads on muscle mass and strength in the elderly: A meta‐analysis. Scandinavian Journal of Medicine and Science in Sports, 26(9), 995-1006. doi:10.1111/sms.12536

Daly, R. M., O'Connell, S. L., Mundell, N. L., Grimes, C. A., Dunstan, D. W., & Nowson, C. A. (2014). Protein-enriched diet, with the use of lean red meat, combined with progressive resistance training enhances lean tissue mass and muscle strength and reduces circulating IL-6 concentrations in elderly women: a cluster randomized controlled trial. The American Journal of Clinical Nutrition, 99(4), 899-910. doi:10.3945/ajcn.113.064154

DeFronzo, R. A. (2004). Pathogenesis of type 2 diabetes mellitus. Medical Clinics of North America, 88(4), 787-835. doi:10.1016/j.mcna.2004.04.013

DeFronzo, R. A. (2009). From the triumvirate to the ominous octet: A new paradigm for the treatment of type 2 diabetes mellitus. Diabetes, 58(4), 773. doi:10.2337/db09-9028

DeFronzo, R. A., & Abdul-Ghani, M. A. (2011). Preservation of β-cell function: The key to diabetes prevention. The Journal of Clinical Endocrinology and Metabolism, 96(8), 2354-2366. doi:10.1210/jc.2011-0246

DeFronzo, R. A., & Tripathy, D. (2009). Skeletal muscle insulin resistance is the primary defect in type 2 diabetes. Diabetes Care, 32(Suppl 2), S157-163. doi:10.2337/dc09-S302

Deschenes, M. R., & Kraemer, W. J. (2002). Performance and physiologic adaptations to resistance training. American Journal of Physical Medicine & Rehabilitation, 81(11), S3-16. doi:10.1097/00002060-200211001-00003

Donges, C. E., Duffield, R., & Drinkwater, E. J. (2010). Effects of resistance or aerobic exercise training on interleukin-6, C-reactive protein, and body composition. Medicine and Science in Sports and Exercise, 42(2), 304-313. doi:10.1249/MSS.0b013e3181b117ca

Eikenberg, J. D., Savla, J., Marinik, E. L., Davy, K. P., Pownall, J., Baugh, M. E., . . . Davy, B. M. (2016). Prediabetes phenotype influences improvements in glucose homeostasis with resistance training. PLoS One, 11(2), e0148009.

Fatouros, I. G., Tournis, S., Leontsini, D., Jamurtas, A. Z., Sxina, M., Thomakos, P., . . . Mitrakou, A. (2005). Leptin and adiponectin responses in overweight inactive elderly following resistance training and detraining are intensity related. The Journal of Clinical Endocrinology and Metabolism, 90(11), 5970-5977. doi:10.1210/jc.2005-0261

Festa, A., D'Agostino, R., Jr., Hanley, A. J., Karter, A. J., Saad, M. F., & Haffner, S. M. (2004). Differences in insulin resistance in nondiabetic subjects with isolated impaired glucose tolerance or isolated impaired fasting glucose. Diabetes, 53(6), 1549-1555. doi:10.2337/diabetes.53.6.1549

Franceschi, C., & Campisi, J. (2014). Chronic inflammation (inflammaging) and its potential contribution to age-associated diseases. Journals of Gerontology Series A: Biomedical Sciences and Medical Sciences, 69(Suppl 1), S4-9. doi:10.1093/gerona/glu057

Fulop, T., Witkowski, J. M., Olivieri, F., & Larbi, A. (2018). The integration of inflammaging in age-related diseases. Seminars in Immunology, 40, 17-35. doi:10.1016/j.smim.2018.09.003

Garber, C. E., Blissmer, B., Deschenes, M. R., Franklin, B. A., Lamonte, M. J., Lee, I.-M., . . . Swain, D. P. (2011). American College of Sports Medicine position stand. Quantity and quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in apparently healthy adults: guidance for prescribing exercise. Medicine and Science in Sports and Exercise, 43(7), 1334-1359. doi:10.1249/MSS.0b013e318213fefb.

Geirsdottir, O., Arnarson, A., Briem, K., Ramel, A., Jonsson, P., & Thorsdottir, I. (2012). Effect of 12-week resistance exercise program on body composition, muscle strength, physical function, and glucose metabolism in healthy, insulin-resistant, and diabetic elderly Icelanders. Journals of Gerontology Series A: Biomedical Sciences and Medical Sciences, 67(11), 1259-1265. doi:10.1093/gerona/gls096

Gleeson, M., Bishop, N. C., Stensel, D. J., Lindley, M. R., Mastana, S. S., & Nimmo, M. A. (2011). The anti-inflammatory effects of exercise: mechanisms and implications for the prevention and treatment of disease. Nature Reviews Immunology, 11(9), 607. doi:10.1038/nri3041

Greiwe, J. S., Cheng, B., Rubin, D. C., Yarasheski, K. E., & Semenkovich, C. F. (2001). Resistance exercise decreases skeletal muscle tumor necrosis factor alpha in frail elderly humans. FASEB Journal, 15(2), 475-482. doi:10.1096/fj.00-0274com

Hajer, G. R., van Haeften, T. W., & Visseren, F. L. J. (2008). Adipose tissue dysfunction in obesity, diabetes, and vascular diseases. European Heart Journal, 29(24), 2959-2971. doi:10.1093/eurheartj/ehn387

Helms, E. R., Cronin, J., Storey, A., & Zourdos, M. C. (2016). Application of the repetitions in reserve-based rating of perceived exertion scale for resistance training. Strength and Conditioning Journal, 38(4), 42-49. doi:10.1519/SSC.0000000000000218

Henneman, E. (1957). Relation between size of neurons and their susceptibility to discharge. Science, 126(3287), 1345-1347.

Holten, M. K., Zacho, M., Gaster, M., Juel, C., Wojtaszewski, J. F., & Dela, F. (2004). Strength training increases insulin-mediated glucose uptake, GLUT4 content, and insulin signaling in skeletal muscle in patients with type 2 diabetes. Diabetes, 53(2), 294-305. doi:10.2337/diabetes.53.2.294

Hotamisligil, G., Shargill, N., & Spiegelman, B. (1993). Adipose expression of tumor necrosis factor-alpha: direct role in obesity-linked insulin resistance. Science, 259(5091), 87-91. doi:10.1126/science.7678183

Hsieh, P. L., Tseng, C. H., Tseng, Y. J., & Yang, W. S. (2018). Resistance training improves muscle function and cardiometabolic risks but not quality of life in older people with type 2 diabetes mellitus: A randomized controlled trial. Journal of Geriatric Physical Therapy, 41(2), 65-76. doi:10.1519/jpt.0000000000000107

Hu, F. B., Sigal, R. J., Rich-Edwards, J. W., Colditz, G. A., Solomon, C. G., Willett, W. C., . . . Manson, J. E. (1999). Walking compared with vigorous physical activity and risk of type 2 diabetes in women: a prospective study. Journal of the American Medical Association, 282(15), 1433-1439. doi:10.1001/jama.282.15.1433

Hunter, G. R., Wetzstein, C. J., Fields, D. A., Brown, A., & Bamman, M. M. (2000). Resistance training increases total energy expenditure and free-living physical activity in older adults. Journal of Applied Physiology, 89(3), 977-984. doi:10.1152/jappl.2000.89.3.977

Jackson, A. S., Janssen, I., Sui, X., Church, T. S., & Blair, S. N. (2012). Longitudinal changes in body composition associated with healthy ageing: men, aged 20-96 years. British Journal of Nutrition, 107(7), 1085-1091. doi:10.1017/S0007114511003886

Johnstone, A. M., Murison, S. D., Duncan, J. S., Rance, K. A., & Speakman, J. R. (2005). Factors influencing variation in basal metabolic rate include fat-free mass, fat mass, age, and circulating thyroxine but not sex, circulating leptin, or triiodothyronine. The American Journal of Clinical Nutrition, 82(5), 941-948. doi:10.1093/ajcn/82.5.941

Kahn, S. E., Hull, R. L., & Utzschneider, K. M. (2006). Mechanisms linking obesity to insulin resistance and type 2 diabetes. Nature, 444(7121), 840-846. doi:10.1038/nature05482

Knowler, W. C., Barrett-Connor, E., Fowler, S. E., Hamman, R. F., Lachin, J. M., Walker, E. A., . . . Diabetes Prevention Program Research, G. (2002). Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. The New England Journal of Medicine, 346(6), 393-403. doi:10.1056/NEJMoa012512

Kohrt, W. M., Kirwan, J. P., Staten, M. A., Bourey, R. E., King, D. S., & Holloszy, J. O. (1993). Insulin resistance in aging is related to abdominal obesity. Diabetes, 42(2), 273-281. doi:10.2337/diab.42.2.273

Kubo, K., Ikebukuro, T., & Yata, H. (2020). Effects of 4, 8, and 12 repetition maximum resistance training protocols on muscle volume and strength. Journal of Strength and Conditioning Research. doi:10.1519/jsc.0000000000003575

Leahy, J. L. (2005). Pathogenesis of type 2 diabetes mellitus. Archives of Medical Research, 36(3), 197-209. doi:10.1016/j.arcmed.2005.01.003

Libardi, C. A., De Souza, G. V., Cavaglieri, C. R., Madruga, V. A., & Chacon-Mikahil, M. P. T. (2012). Effect of resistance, endurance, and concurrent training on TNF-α, IL-6, and CRP. Medicine and Science in Sports and Exercise, 44(1). doi:10.1249/MSS.0b013e318229d2e9

Martins, M. S., Farinha, J. B., Benetti, C. B., Courtes, A. A., Duarte, T., Da Silva, J. C. N., . . . Dos Santos, D. L. (2015). Positive effects of resistance training on inflammatory parameters in men with metabolic syndrome risk factors. Nutrición Hospitalaria, 32(2), 792-798. doi:10.3305/nh.2015.32.2.8696

Mathur, N., & Pedersen, B. K. (2008). Exercise as a mean to control low-grade systemic inflammation. Mediators of Inflammation, 2008. doi:10.1155/2008/109502

Mavros, Y., Kay, S., Simpson, K. A., Baker, M. K., Wang, Y., Zhao, R. R., . . . De Vos, N. (2014). Reductions in C-reactive protein in older adults with type 2 diabetes are related to improvements in body composition following a randomized controlled trial of resistance training. Journal of Cachexia, Sarcopenia and Muscle, 5(2), 111-120.

McArdle, M. A., Finucane, O. M., Connaughton, R. M., McMorrow, A. M., & Roche, H. M. (2013). Mechanisms of obesity-induced inflammation and insulin resistance: insights into the emerging role of nutritional strategies. Frontiers in Endocrinology, 4, 52. doi:10.3389/fendo.2013.00052

Miller, T., Mull, S., Aragon, A. A., Krieger, J., & Schoenfeld, B. J. (2018). Resistance training combined with diet decreases body fat while preserving lean mass independent of resting metabolic rate: A randomized trial. International Journal of Sport Nutrition and Exercise Metabolism, 28(1), 46. doi:10.1123/ijsnem.2017-0221

Mitchell, C. J., Churchward-Venne, T. A., West, D. W., Burd, N. A., Breen, L., Baker, S. K., & Phillips, S. M. (2012). Resistance exercise load does not determine training-mediated hypertrophic gains in young men. Journal of Applied Physiology, 113(1), 71-77. doi:10.1152/japplphysiol.00307.2012

Mohamed-Ali, V., Goodrick, S., Rawesh, A., Katz, D., Miles, J., Yudkin, J., . . . Coppack, S. (1997). Subcutaneous adipose tissue releases interleukin-6, but not tumor necrosis factor-α, in vivo. The Journal of Clinical Endocrinology and Metabolism, 82(12), 4196-4200. doi:10.1210/jcem.82.12.4450

Nikseresht, M., Agha-Alinejad, H., Azarbayjani, M. A., & Ebrahim, K. (2014). Effects of Nonlinear Resistance and Aerobic Interval Training on Cytokines and Insulin Resistance in Sedentary Men Who Are Obese. The Journal of Strength and Conditioning Research, 28(9), 2560-2568. doi:10.1519/jsc.0000000000000441

Oh, K. J., Lee, D. S., Kim, W. K., Han, B. S., Lee, S. C., & Bae, K. H. (2016). Metabolic adaptation in obesity and type II diabetes: myokines, adipokines and hepatokines. International Journal of Molecular Sciences, 18(1). doi:10.3390/ijms18010008

Olson, T. P., Dengel, D. R., Leon, A. S., & Schmitz, K. H. (2007). Changes in inflammatory biomarkers following one-year of moderate resistance training in overweight women. International Journal of Obesity, 31(6), 996-1003. doi:10.1038/sj.ijo.0803534

Onambele-Pearson, G. L., Breen, L., & Stewart, C. E. (2010). Influence of exercise intensity in older persons with unchanged habitual nutritional intake: skeletal muscle and endocrine adaptations. Age, 32(2), 139-153. doi:10.1007/s11357-010-9141-0

Ouchi, N., Kihara, S., Funahashi, T., Nakamura, T., Nishida, M., Kumada, M., . . . Kishida, K. (2003). Reciprocal association of C-reactive protein with adiponectin in blood stream and adipose tissue. Circulation, 107(5), 671-674. doi:10.1161/01.CIR.0000055188.83694.B3

Pedersen, B., Bruunsgaard, H., Ostrowski, K., Krabbe, K., Hansen, H., Krzywkowski, K., . . . Ibfelt, T. (2000). Cytokines in Aging and Exercise. International Journal of Sports Medicine, 21(Suppl 1), 4-9.

Petersen, A. M. W., & Pedersen, B. K. (2005). The anti-inflammatory effect of exercise. Journal of Applied Physiology, 98(4), 1154-1162. doi:10.1152/japplphysiol.00164.2004

Phillips, M. D., Flynn, M. G., McFarlin, B. K., Stewart, L. K., & Timmerman, K. L. (2010). Resistance training at eight-repetition maximum reduces the inflammatory milieu in elderly women. Medicine and Science in Sports and Exercise, 42(2), 314-325. doi:10.1249/MSS.0b013e3181b11ab7

Phillips, M. D., Patrizi, R. M., Cheek, D. J., Wooten, J. S., Barbee, J. J., & Mitchell, J. B. (2012). Resistance training reduces subclinical inflammation in obese, postmenopausal women. Medicine and Science in Sports and Exercise, 44(11), 2099-2110. doi:10.1249/MSS.0b013e3182644984

Pratley, R., Nicklas, B., Rubin, M., Miller, J., Smith, A., Smith, M., . . . Goldberg, A. (1994). Strength training increases resting metabolic rate and norepinephrine levels in healthy 50-to 65-yr-old men. Journal of Applied Physiology, 76(1), 133-137. doi:10.1152/jappl.1994.76.1.133

Reaven, G. M. (1988). Banting lecture 1988. Role of insulin resistance in human disease. Diabetes, 37(12), 1595-1607. doi:10.2337/diab.37.12.1595

Reid, K. F., Naumova, E. N., Carabello, R. J., Phillips, E. M., & Fielding, R. A. (2008). Lower extremity muscle mass predicts functional performance in mobility-limited elders. The Journal of Nutrition Health and Aging, 12(7), 493. doi:10.1007/bf02982711

Rotter, V., Nagaev, I., & Smith, U. (2003). Interleukin-6 (IL-6) induces insulin resistance in 3T3-L1 adipocytes and is, like IL-8 and tumor necrosis factor-α, overexpressed in human fat cells from insulin-resistant subjects. Journal of Biological Chemistry, 278(46), 45777-45784. doi:10.1074/jbc.M301977200

Santos, L., Ribeiro, A. S., Schoenfeld, B. J., Nascimento, M. A., Tomeleri, C. M., Souza, M. F., . . . Cyrino, E. S. (2017). The improvement in walking speed induced by resistance training is associated with increased muscular strength but not skeletal muscle mass in older women. European Journal of Sport Science, 17(4), 488-494. doi:10.1080/17461391.2016.1273394

Selvin, E., Paynter, N. P., & Erlinger, T. P. (2007). The effect of weight loss on C-reactive protein: a systematic review. Archives of Internal Medicine, 167(1), 31-39. doi:10.1001/archinte.167.1.31

Shoelson, S. E., Herrero, L., & Naaz, A. (2007). Obesity, inflammation, and insulin resistance. Gastroenterology, 132(6), 2169-2180. doi:10.1053/j.gastro.2007.03.059

Sigal, R. J., Kenny, G. P., Wasserman, D. H., Castaneda-Sceppa, C., & White, R. D. (2006). Physical activity/exercise and type 2 diabetes: a consensus statement from the American Diabetes Association. Diabetes Care, 29(6), 1433-1438. doi:10.2337/dc06-9910

Snel, M., Jonker, J. T., Schoones, J., Lamb, H., de Roos, A., Pijl, H., . . . Jazet, I. M. (2012). Ectopic fat and insulin resistance: pathophysiology and effect of diet and lifestyle interventions. International Journal of Endocrinology, 2012, 983814. doi:10.1155/2012/983814

Snijders, T., Verdijk, L. B., & van Loon, L. J. (2009). The impact of sarcopenia and exercise training on skeletal muscle satellite cells. Ageing Research Reviews, 8(4), 328-338. doi:10.1016/j.arr.2009.05.003

Stewart, L. K., Flynn, M. G., Campbell, W. W., Craig, B. A., Robinson, J. P., Timmerman, K. L., . . . Talbert, E. (2007). The influence of exercise training on inflammatory cytokines and C-reactive protein. Medicine and Science in Sports and Exercise, 39(10), 1714-1719. doi:10.1249/mss.0b013e31811ece1c

Stouthard, J., Romijn, J. A., Van der Poll, T., Endert, E., Klein, S., Bakker, P., . . . Sauerwein, H. P. (1995). Endocrinologic and metabolic effects of interleukin-6 in humans. American Journal of Physiology-Endocrinology And Metabolism, 268(5), E813-E819. doi:10.1152/ajpendo.1995.268.5.E813

Stowe, R. P., Peek, M. K., Cutchin, M. P., & Goodwin, J. S. (2010). Plasma cytokine levels in a population-based study: relation to age and ethnicity. Journals of Gerontology Series A: Biomedical Sciences and Medical Sciences, 65(4), 429-433. doi:10.1093/gerona/glp198

Taaffe, D., Pruitt, L., Pyka, G., Guido, D., & Marcus, R. (1996). Comparative effects of high‐and low‐intensity resistance training on thigh muscle strength, fiber area, and tissue composition in elderly women. Clinical Physiology, 16(4), 381-392. doi:10.1111/j.1475-097X.1996.tb00727.x

Tabak, A. G., Herder, C., Rathmann, W., Brunner, E. J., & Kivimaki, M. (2012). Prediabetes: a high-risk state for diabetes development. Lancet, 379(9833), 2279-2290. doi:10.1016/s0140-6736(12)60283-9

Theodorou, A. A., Panayiotou, G., Volaklis, K. A., Douda, H. T., Paschalis, V., Nikolaidis, M. G., . . . Tokmakidis, S. P. (2016). Aerobic, resistance and combined training and detraining on body composition, muscle strength, lipid profile and inflammation in coronary artery disease patients. Research in Sports Medicine, 24(3), 171-184. doi:10.1080/15438627.2016.1191488

Tibana, R. A., da Cunha Nascimento, D., de Sousa, N. M. F., de Souza, V. C., Durigan, J., Vieira, A., . . . Navalta, J. W. (2014). Enhancing of women functional status with metabolic syndrome by cardioprotective and anti-inflammatory effects of combined aerobic and resistance training. PLoS One, 9(11). doi:10.1371/journal.pone.0110160

Tomeleri, C. M., Ribeiro, A. S., Souza, M. F., Schiavoni, D., Schoenfeld, B. J., Venturini, D., . . . Cyrino, E. S. (2016). Resistance training improves inflammatory level, lipid and glycemic profiles in obese older women: A randomized controlled trial. Experimental Gerontology, 84, 80-87. doi:10.1016/j.exger.2016.09.005

Tomeleri, C. M., Souza, M. F., Burini, R. C., Cavaglieri, C. R., Ribeiro, A. S., Antunes, M., . . . Cyrino, E. S. (2018). Resistance training reduces metabolic syndrome and inflammatory markers in older women: A randomized controlled trial. Journal of Diabetes, 10(4), 328-337. doi:10.1111/1753-0407.12614

Van Roie, E., Delecluse, C., Coudyzer, W., Boonen, S., & Bautmans, I. (2013). Strength training at high versus low external resistance in older adults: Effects on muscle volume, muscle strength, and force–velocity characteristics. Experimental Gerontology, 48(11), 1351-1361. doi:10.1016/j.exger.2013.08.010

Vandervoort, A. A., Kramer, J. F., & Wharram, E. R. J. J. o. g. (1990). Eccentric knee strength of elderly females. Journal of Gerontology, 45(4), B125-B128. doi:10.1093/geronj/45.4.B125

Wasada, T., Kuroki, H., Katsumori, K., Arii, H., Sato, A., Aoki, K., . . . Hanai, G. (2004). Who are more insulin resistant, people with IFG or people with IGT? Diabetologia, 47(4), 759-760. doi:10.1007/s00125-004-1339-1

Wolfe, R. R., Miller, S. L., & Miller, K. B. (2008). Optimal protein intake in the elderly. Clinical Nutrition, 27(5), 675-684. doi:10.1016/j.clnu.2008.06.008

Woods, J. A., Wilund, K. R., Martin, S. A., & Kistler, B. M. (2012). Exercise, inflammation and aging. Aging and Disease, 3(1), 130.

World Health Organization. (1995). Physical status: The use of and interpretation of anthropometry, Report of a WHO Expert Committee.

Wright, D. C., & Swan, P. D. (2001). Optimal exercise intensity for individuals with impaired glucose tolerance. Diabetes Spectrum, 14(2), 93-97. doi:10.2337/diaspect.14.2.93

Yu, R., Kim, C. S., Kwon, B. S., & Kawada, T. (2006). Mesenteric adipose tissue-derived monocyte chemoattractant protein-1 plays a crucial role in adipose tissue macrophage migration and activation in obese mice. Obesity, 14(8), 1353-1362. doi:10.1038/oby.2006.153

無法下載圖示 電子全文延後公開
2025/07/30
QR CODE