簡易檢索 / 詳目顯示

研究生: 李伊璿
Yi-Shiuan Li
論文名稱: 氣相層析-哨式偵測器的開發與研究
Development and Application of a Milli-Whistle for Use in Gas Chromatography Detection
指導教授: 林震煌
Lin, Cheng-Huang
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 108
中文關鍵詞: 哨式偵測器氣相層析儀
英文關鍵詞: Milli-Whistle, Gas Chromatography
論文種類: 學術論文
相關次數: 點閱:229下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究開發了應用於氣相層析儀(gas chromatography)的哨式偵測器。哨式偵測器比熱傳導偵測器高出一個數量級的靈敏度。哨式偵測器可以直接與氣相層析儀的毛細管柱結合。管柱氣體以及外加的鞘流氣體通過哨式偵測器後會產生聲音,此聲音可以簡單的由麥克風接收再由LabVIEW的內建程式做傅立葉轉換(Fourier transform)後,可得到非常尖銳的頻率訊號(半高寬約為1.6 Hz)。分析氣體可經由滯留時間進行定性,並由哨式偵測器產生頻率訊號的變化量,對分析氣體進行定量的分析。當管柱氣體以及鞘流氣體使用氮氣的情況下,對各種不同氣體進行偵測,包括氫氣、氦氣、氬氣、二氧化碳、二氧化硫以及氙氣,各氣體偵測極限約在3 μL,並且發現單位體積頻率變化量與分子量具有線性關係。在偵測液體部分,包括甲醇,環己烷,四氫呋喃,正己烷和丙酮,各液體偵測極限約在10 μg。將管柱氣體以及鞘流氣體改為氫氣的情況之下,可以改善哨式偵測器的偵測極限。以偵測丙酮為例,線性範圍在0.2~200 μg。此外,本實驗也嘗試利用阿達瑪進樣器,使待分析的氣體依據阿達瑪序列注射至氣相層析-哨式偵測器進行偵測,阿達瑪轉換技術最大的特點是能將低於偵測極限的訊號提升,利用255次、511次、1023次以及2047次的阿達瑪序列成功的提升二氧化硫的偵測極限的訊號峰7.4倍、9.7倍、15.2倍以及21.1倍。

    A simple milli-whistle was developed for the use in GC (gas chromatography) detection, in which compared to a thermal conductivity detector (TCD) one order of magnitude superior sensitivity can be obtained.The milli-whistle can be directly connected to the outlet of a GC capillary. The gas and make-up gas passing through the capillary produces a sound as it passes through the milli-whistle (i.e. the gas of the GC-eluate). The sound can easily be detected by a microphone, which, after a Fourier transform (FT) by means of a LabVIEW (Laboratory Virtual Instrumentation Engineering Workbench) built-in program, a very sharp frequency peak (full width at half maximum, ~ 1.6 Hz) can be simultaneously observed. As a result, GC-elutes can be qualitatively determined based on their retention times, and a quantitative analysis can be achieved based on the frequency-shifts. When the make-up and carrier gases used were nitrogen, in the case of gas samples, including hydrogen, helium, argon, carbon dioxide, sulfur dioxide and xenon, the limits of detection were found to be ~ 3 µL/each injection and found the linear correlation between frequency shift per µL and molecular weight ; in the case of liquid samples, including methanol, cyclohexane, tetrahydrofuran, hexane and acetone, the limits of detection were determined to be ~ 10 µg/each injection, respectively. When the background gases were shifted to hydrogen, the limits of detection can be further improved. In this case, when acetone was selected as the model sample, a linear relationship was found in the range of 0.2 ~ 200 µg/injection.In addition, a novel Hadamard-injector was successfully designed and used in the Hadamard transform-gas chromatography (HT-GC) method.When SO2 gas was selected as model compound, thesignal-to-noise (S/N) ratio was substantially improved after inverse Hadamard transformation of the encoded chromatogram. Under optimized conditions, when Hadamard matrix of 255 ,511 ,1023 and 2047 was used, the S/N ratio of the signal for SO2 was significantly improved to 7.4 ,9.7 ,15.2 and 21.1 fold.

    摘要……………………………………………………………………………………Ⅰ Abstract…………………..……………………………………………………………Ⅱ 目錄……………………………………………………………………………………Ⅲ 圖目錄…………………………………………………………………………………Ⅴ 表目錄…………………………………………………………………………………Ⅵ 第一章 緒論 1-1 研究目的………………………………………………………………………..01 1-2 氣相層析儀偵測器…………………………………………………………02 1-3 聲學偵測器………………………………………………………………04 第二章 研究方法及原理 2-1 哨式偵測器……………………………………………………………05 2-1-1 哨式偵測器原理………………………………………………………06 2-1-2 哨式偵測器製作…………………………………………………………06 2-2 阿達瑪矩陣原理……………………………………………………………11 2-2-1 矩陣起源…………………………………………………………………12 2-2-2阿達瑪轉換法……………………………………………………………13 2-2-3 阿達瑪轉換提高S/N比理論值…………………………………………21 2-3 阿達瑪矩陣在其他方面的應用……………………………………………24 2-3-1 在分析化學上的應用………………………………………………24 2-3-2 在其他方面上的應用………………………………………………27 第三章 儀器裝置及藥品 3-1 儀器裝置……………………………………………………………………30 3-1-1 氣相層析儀………………………………………………………………30 3-1-2 哨式偵測器………………………………………………………………35 3-1-3 阿達瑪進樣器…………………………………………………………40 3-1-4 Labview程式軟體……………………………………………………43 3-2 儀器週邊設備及藥品列表…………………………………………………48 第四章 研究過程和結果討論 4-1 哨式偵測器…………………………………………………………………52 4-1-1氣體種類與流速對哨式偵測器的影響………………………………53 4-1-2哨式偵測器結合氣相層析儀…………………………………………….54 4-1-3分子量與單位體積變化量的關係………………………………………60 4-1-4載流及鞘流氣體種類對哨式偵測器的影響……………………………64 4-1-5 配合氫氣使用哨式偵測器………………………………………………68 4-1-6哨式偵測器與熱傳導偵測器的比較……………………………………74 4-1-7 哨式偵測器的定量………………………………………………………79 4-2 阿達瑪進樣系統…………………………………………………………88 4-2-1阿達瑪進樣器結合哨式偵測器…………………………………………88 4-2-2 阿達瑪進樣條件…………………………………………………………88 4-2-3 阿達瑪進樣與單點進樣比較……………………………………………89 4-3 真實樣品……………………………………………………………………96 4-3-1乙醇中含水量測定………………………………………………………96 4-3-2 Ethanol reforming的液體產物測定………………………………97 第五章 結論 5-1 哨式偵測器方面…………………………………………………………101 5-2 阿達瑪轉換方面…………………………………………………………101 論文發表…………………………………………………………………………102 研究發表…………………………………………………………………………103參考資料…………………………………………………………………………104 附件︰期刊論文

    [1] Atkinson, R.; Atmos. Environ. 1990, 24A, 1.
    [2] Lahre, T.; 81st Annual Meeting of APCA, Dallas, Texas, June,1998, 19-24.
    [3] Ruberu, S. R.; Draper, W. M.; Perera, S. K.; J. Agric. Food Chem. 2000, 48, 4109.
    [4] Karg, F.P.M.; J. Chromatogr. A, 1993, 634, 87-100.
    [5] Josep, I.; Bellnchon, G.; Grimalt, J.O.; AlbalgOs, J.; Environ Sci Technol, 1998, 22, 677.
    [6] Sobek, A.; Gustafsson, O.R.; Axelman, J.; J. Environ. Anal. Chem., 2003, 83, 177–187v.
    [7] . Choi, J.W.; Lee, J.H.; Moona, B.S.; Baeka, K.H.; J. Chromatogr. A, 2007, 1157, 17–22.
    [8] Kim, S.R.; Park, K.H.; Kim, D.; et al. 2008, 17. 971-975.
    [9] Breithaupt, D. E.; Food Chemistry, 2004, 86, 449.
    [10] Potter, T. L.; Marti, L.; Belflower, S.; Truman, C. C.; J. Agricultural and Food Chem. 2000, 48, 4103.
    [11] John, P. T.; Promode, C. B.; J. Chromatogr. A, 1987, 408, 335.
    [12] Gang, S.; Hian, K. L.; J. Chromatogr. A, 2003, 985, 167.
    [13] Zambonin, C.G.; Catucci, F.; Palmisano, F.; Analyst, 1998, 123, 2825.
    [14] Bouaid, A.; Ramos, L.; Gonzalez, M.J.; Fernandez, P.; C. J. Chromatogr. A , 2001, 939, 13.
    [15] Zambonin, C.G.; F. Palmisano, J. Chromatogr. A, 2000, 874, 247.
    [16] Aguilar, C.; Penalver, S.; Pocurull, E.; Borrull, F.; Marce, R.M.; J. Chromatogr. A, 1998, 795, 105.
    [17] Hernandez, F.; Beltran, J.; Lopez, F.J.; Gaspar, J.V.; Anal. Chem. 2000, 72, 2313.
    [18] Choudhury, T.K.; Gerhardt, K.O.; Mawhinney, T.P.; Environ. Sci. Technol. 1996, 30, 3259.
    [19] Westphal F.; Junge T.; Girreser U.; Stobbe S.; Perez S.B.; Forensic Sci.Int. 2009, 187, 87.
    [20] Abdel-Hay K.M.; Awad T.; DeRuiter J.; Clark C.R.; Forensic Sci.Int. 2010, 195, 78.
    [21] Hiroyuki Inoue, Yuko T. Iwata, Tatsuyuki Kanamori, Hajime Miyaguchi, Kenji Tsujikawa, Kenji Kuwayama, Hiroe Tsutsumi, Munehiro Katagi, Hitoshi Tsuchihashi, Tohru Kishi, Jpn. J. Sci. Tech. Iden. 2004, 9, 165.
    [22] Pellegrini, M.; Rosati, F.; Pacifici, R.; Zuccaro, P.; Romolo, F. S.; Lopez, A.; J. Chromatogr. B, 2002, 769, 243.
    [23] Nakamoto, A.; Namera, A.; Nishida, M.; Yashiki, M.; Kuramoto, T.; Kimura, K.; Forensic Toxicol. 2007, 25, 1.
    [24] Kanamori, T.; Kuwayama, K.; Tsujikawa, K.; Miyaguchi, H.; Iwata, Y.; Inoue, H.; Kishi, T.; J. Health Sci. 2005, 52, 425.
    [25] Centini, F.; Masti, A.; Comparini, I. B.; Forensic Sci. Int., 1996, 83, 161.
    [26] Wilson, J. M.; McGreoge, F. S.; Smolinske, Meatherall,R.; Forensic Sci. Int. 2005, 148, 31.
    [27] Brandt,S. D.; Mansell,D.; Freeman,S.; Fleet, I. A.; Alder,J. F.; J. Pharm. Biomed. Anal. 2006, 41, 872.
    [28] Essumang, D. K. Sci. World J. 2010, 10, 972–985.
    [29] Seo, H. Y.; Ha, J.; Shin, D. B.; Shim, S. L.; No, K. M.; Kim, K. S.; Lee, K. B.;Han, S. B. J. Am. Oil Chem. Soc. 2010, 87, 621–626.
    [30] Derwich, E.; Benziane, Z.; Boukir, A. Int. J. Agric. Biol. 2010, 12, 381–385.
    [31] Schlink, U.; Rehwagena, M.; Dammb, M.; Richtera, M.; Bortec, M.;Herbarth, O. Atmos. Environ. 2004, 38, 1181–1190
    [32] Spalding, B. P.; Watson, D. B. Environ. Sci. Technol. 2006, 40, 7861–7867.
    [33] Pribylova, L.; Dvorak, B. J. Chromatogr. A, 2009, 1216, 4046–4050.
    [34] O’Keefe, W. K.; Ng, F. T. T.; Rempel, G. L. J. Chromatogr. A ,2008, 1182, 113–118.
    [35] Vong, W. T.; Sa, F.; Chan, T. M.; Lam, C. W. K. Clin. Chim. Acta 2010, 411, 909–909.
    [36] Sperlingova, I.; Dabrowska, L.; Stransky, V.; Duskova, S.; Kucera, J.;Tvrdikova, M.; Tichy, M. Anal. Bioanal. Chem. 2010, 397, 433–438.
    [37] Akao, S.; Iwata, N.; Sakuma, M.; Ohnishi, H.; Noguchi, K.; Tsuji, T.; Nakaso, N.; Yamanaka, K. Jpn. J. Appl. Phys. 2008, 47, 4086–4090.
    [38] Oh, S. Y.; Ko, J. W.; Jeong, S. Y.; Hong, J. J. Chromatogr. A 2008, 1205, 117–127.
    [39] Watson, G. W.; Staples, E. J.; Viswanathan, S. Environ. Prog. 2003, 22, 215–226.
    [40] Mah, C.; Thurbide, K. B. J. Sep. Sci. 2006, 29, 1922–1930.
    [41] Martin, S.; Ultrasonics Symposium Proceeding, 1996, 1, 423-434.
    [42] Wu, L.; Shen, C. Y.; Shen,T.T.; Surface Actuators, 1999, 76, 43-50.
    [43] Zupan, J.; Bohanec, S.; Razinger, M.; Novic, M. Analytical Chimica Acta. 1988, 210, 63.
    [44] Smit, H. C. Chromatographia ,1970, 3, 515.
    [45] Brock, A.; Rodriguez, N.; Zare, R. N. Anal. Chem. 1998, 70, 3735
    [46] Trapp, O.; Kimmel, J. R.; Yoon, O. K.; Zuleta, I. A.; Feranadez, F. M.; Zare, R. N. Angew. Chem. Int. Ed. 2004, 43, 6541.
    [47] Fernández, F. M.; Vadillo, J. M.; Kimmel, J. R.; Wetterhall, M.; Markides, K.; Rodriguez, N.; Zare, R. N. Anal. Chem. 2002, 74, 1611.
    [48] Literature Seminar, Pan, C. “Applications of The Hadamard Transform in Analytical Chemistry” 2007, 3rd, pp. 3.
    [49] Yates, F. J. Roy. Stat. Soc. Supp. 1935, 2, 181.
    [50] Fellgett, P. J. de Physique et le Radium. 1958, 19, 187.
    [51] Mei, E.; Chen, G.; Zeng, Y. Microchem. J. 1996, 53, 316.
    [52] Tang, H.; Chen, G.; Zhou, J.; Wu, Q. Anal. Chim. Acta. 2002, 468, 27.
    [53] Hadamard, J. Bulletin des Sciences Mathemaiques. 1893, 17, 240.
    [54] Wiely, W. C.; McLaren, I. H. Review of Scientific Instruments. 1955, 26, 1150-1157
    [55] Brock, A.; Rodriguez, N.; Zare, R. N. Anal.Chem. 1998, 70, 3735-3741.
    [56] Trapp, O.; Kimmel, J. R.; Yoon, O. K.; Zuleta, I. A.; Feranadez, F. M.; Zare, R. N. Angew. Chem. Int. Ed. 2004, 43, 6541-6544.
    [57] Fernández, F. M.; Vadillo, J. M.; Kimmel, J. R.; Wetterhall, M.; Markides, K.; Rodriguez, N.; Zare, R. N. Anal.Chem. 2002, 74, 1611-1617.
    [58] Treado, P. J.; Govil, A.; Morris, M. D.; Sternitzke, K. D.; McCreery, R. L. Soc. Appl. Spetrosc. 1990, 44, 1270-1275.
    [59] DeVerse, R. A.; Hammaker, R. M.; Fateley, W. G. J. Mol. Struct. 2000, 521, 77-88.
    [60] Chen, G.; Mei, E.; Gu, W.; Zeng, X.; Zeng, Y. Anal.Chim. Acta. 1995, 300, 261-267.
    [61] Mei, E.; Chen, G.; Zeng, Y. Microchem. J. 1996, 53, 316-325.
    [62] Tang, H.; Chen, G.; Zhou, J.; Wu, Q. Anal.Chim. Acta. 2002, 468, 27-34.
    [63] Clowers, B. H.; Siems, W. F.; Hill, H. H.; Massick, S. M. Anal. Chem. 2006, 78, 44-51.
    [64] Szumlas, A.W.; Ray, S. J.; Hieftje, G. M. Anal. Chem. 2006, 78, 4474-4481.
    [65] Fletcher, D. W.; Haselgrove, J. C.; Bolinger, H. Magn. Reson. Imaging. 1999, 17, 1457-1468.
    [66] Kupce, E.; Freeman, R. J. Mag. Reson. 2003, 163, 56-63.
    [67] Kaneta, T.; Yamaguchi, Y.; Imasaka, T. Anal. Chem. 1999, 71, 5444-5446.
    [68] Kaneta, T. Anal. Chem. 2001, 73, 540A-547A.
    [69] Hata, K.; Kichise, Y.; Kaneta, T.; Imasaka, T. Anal.Chem. 2003, 75, 1765-1768.
    [70] Hata, K.; Kaneta, T.; Imasaka, T. Anal. Chem. 2004, 76, 4421-4425.
    [71] Braun, K. L.; Hapuarachchi, S.; Ferrnandez, F. M.; Aspinwall, C. A. Anal. Chem. 2006, 78, 1628-1635.
    [72] Zhang, T; Fang, Q; Fang, Z.-L. Chem. J. Chinese Universities. 2003, 10, 1775-1778.
    [73] Annino, R.; Gonnord, M.-F.; Guichon, G. Anal. Chem. 1979, 51, 379-382.
    [74] Phillips, J. B. Anal. Chem. 1980, 52, 468A-478A.
    [75] Kaljurand, M.; Kūllik, E. J. Chromatogr. 1979, 171, 243-247.
    [76] Villalanti, D. C.; Burke, M. F.; Phillips, J. B. Anal. Chem. 1979, 51, 2222-2225.
    [77] Kaljurand, T.; Smit, H. C. Chemometr. Intell. Lab. 2005, 79, 65-72.
    [78] Kaljurand, M.; Kūllik, E. J. Chromatogr. 1979, 171, 243-247.
    [79] 黃世光, 王丕承, 超飽和設計的研究,國立中央大學統計研究所,2000 年 6 月.
    [80] Richardson, E. G. H. 264 and MPEG-4 Video Compression: Video Coding for Next-generation Multimedia. Chichester: John Wiley & Sons Ltd., 2003.
    [81] Karasek, F.W., Clemant, R.E. Elseire science publishing company Inc., 1988.

    下載圖示
    QR CODE