簡易檢索 / 詳目顯示

研究生: 陳昱全
Chen, Yu-Chuan
論文名稱: 鈷鈀合金薄膜於藍寶石基板(0001)在氫化效應下對磁性之影響
Hydrogenation Effect on Magnetism of CoPd/Al2O3(0001) thin films
指導教授: 林文欽
Lin, Wen-Chin
學位類別: 碩士
Master
系所名稱: 物理學系
Department of Physics
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 45
中文關鍵詞: 鈀的氫氣效應合金薄膜鈷鈀合金
英文關鍵詞: palladium hydrogenation effect, CoPd alloy, MOKE
DOI URL: https://doi.org/10.6345/NTNU202203626
論文種類: 學術論文
相關次數: 點閱:180下載:43
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文為探討在室溫下,氫氣吸附與脫離的效應對於不同厚度,10nm、20nm、30nm、60nm Co50Pd50/Al2O3(0001)合金薄膜的影響。
    首先樣品皆在超高真空下鍍膜完成,接著使用能量分散X-射線光譜分析(EDX)量測樣品的成分比例,並用穿透式電子顯微鏡(TEM)校正樣品的厚度,然後使用柯爾磁光效應(MOKE)在真空以及曝氫的環境下量測樣品的磁性轉變,最後再使用原子力顯微鏡(AFM)與磁力顯微鏡(MFM)觀察樣品表面與磁區分佈。CoPd的合金在吸附氫氣後,對自身的磁性產生了很大的影響,包括磁滯曲線的矯頑場(Hc)、殘磁(Mr)、飽和磁化量(Ms)與光源反射率等,甚至有磁易軸轉向的情況(Spin Reorientation Transition),原因就在於Pd能夠吸附比自身體積大很多的氫氣進而擠壓到Co的晶格結構或者因電荷轉移改變合金材料的電子結構。在10nm樣品上,曝氫後矯頑場甚至縮小了7倍之多。隨著厚度不同,每片樣品所表現出的磁性轉變也不同,另外在樣品曝氫時,樣品皆表現出去磁的反應,也就是內部磁區因氫氣吸附而被打亂。藉由重複量測柯爾磁光訊號,發現氫氣的吸附與脫附為可逆反應,反應速度快而且具有重複性。

    In this study, we discussed the hydrogenation effect on the magnetic behavior of Co50Pd50/Al2O3(0001) alloy thin films.
    The composition of Pd and Co was measured by Energy Dispersive X-ray analysis (EDX). And we use transmission electron microscopy (TEM) to calibrate the thickness of sample. We measured the Megneto-Optical Kerr Effect (MOKE) before and after hydrogen absorption with different thickness of 10nm、20nm、30nm and 60nm alloy thin films. We found there were considerable change in magnetic coercivity (Hc)、magnetic remanence (Mr)、magnetic saturation(Ms) and reflectivity. That's because Pd can absorb a lot of hydrogen atoms in its crystal. The hydrogenation effect might change the crystalline or electronic structure of samples. As the thickness increased, the magnetism of each sample was different. When we exposed the hydrogen in the chamber, the samples became demagnetized. That meant the magnetic domains were reorganized after hydrogen absorption. Besides, we found the hydrogenation effect is reversible and the reaction time is within few seconds to few minutes.

    致謝....................................................................................................................I 摘要.......................................................................................... ........................II Abstract..........................................................................................................III 第一章 緒論 1.1 鈀(palladium)與磁性材料在氫氣下的磁性反應..................................1 第二章 基本原理與概念 2.1 磁性材料............................................................................................3 2.2 磁滯現象............................................................................................5 2.3 磁光柯爾效應.....................................................................................6 2.4 基板...................................................................................................8 2.4.1 藍寶石基板..................................................................................8 2.4.2 陽極氧化鋁基板.......................................................................... 8 2.5 鈀與氫氣吸附效應...........................................................................10 第三章 實驗儀器 3.1 超高真空系統...................................................................................12 3.2 磁光柯爾效應系統(MOKE) ..............................................................15 3.3 場發射電子式掃描顯微鏡.................................................................17 第四章 實驗與結果討論 4.1 實驗樣品備製.................................................................................18 4.2 [Co50Pd50]/Al2O3(0001) 薄膜在不同厚度下吸附氫氣的影響..........19 4.3 [Co50Pd50]/Al2O3(0001) 薄膜在氫氣吸附與脫附時的去磁現象.......25 4.4 [Co50Pd50]/Al2O3(0001) 薄膜吸附氫氣的可逆性與反應時間..........29 4.5 [Co50Pd50]/Al2O3(0001) 薄膜的表面形態與樣貌............................31 4.6 [Co50Pd50]/Al2O3(0001) 薄膜的表面與介面效應............................36 4.7 [Co50Pd50]/Al2O3(0001) 薄膜的剖面結構與成份分析.....................38 第五章 總結....................................................................................................40 參考文獻..........................................................................................................42 附錄.................................................................................................................44

    1. W. C. Lin, C. J. Tsai, X. M. Liu, A. O. Adeyeye, J. Appl. Phys. 106, 073904 (2014)

    2. W. C. Lin, C. J. Tsai, H. Y. Huang, B. Y. Wang, V. R. Mudinepalli & H. C. Chiu, J. Appl. Phys. 106, 012404 (2015)

    3. W. C. Lin , B.Y Wang , H. Y Huang, C. J Tsai, V. R Mudinepalli, J. Alloys. Compd. 661, 20-26 (2016)

    4. W. C. Lin, C. S. Chi, T. Y. Ho, C. J. Tsai, F. Y. Lo, J. Appl. Phys. 112, 063914 (2012).

    5. W. C. Lin, C. J. Tsai, B. Y. Wang, C. H. Kao, W. F. Pong, J. Appl. Phys. 102, 252404 (2013)

    6. 陳建淼研究生(NCUE), 洪連輝教授責任編輯(NCUE), Magnetic Materials. Physics, Introductory Modern Technology, Introductory Modern Technology. (2009)

    7. Toshiyuki Nakamura et. al., Development of Radio Frequency Circuit Using Silicon-on-Sapphire (SOS) Technology, Oki Technical Review, Issue 200 Vol. 71 No.4 (2004)

    8. B. D. Adams, A. Chen, Mater. Today Volume 14, Issue 6, Pages 282–289 (2011)

    9. M. Ramanathan, G Skudlarek, H. H. Wang, S. B. Darling, IOP. Nanotechnology, Volume 21 (2010)

    10. J. S. Lee, S .G. Kim, S. Cho, J. Jang, Nanoscale, 7, 20665-20673 (2015)

    11. Dileep nanotech, Microelectronics: Fabrication of micro/nano structures on silicon surface (2011)

    12. W. Peng, R. H. Victora, J. H. Judy, K. Gao, J. M. Sivertsen, J. Appl. Phys. 87, 6358 (2000)
    13. A. G. Roy, D. E. Laughlin, T. J. Klemmer, K. Howard, S. Khizroev, D. Litvinov, J. Appl. Phys. 89, 7531 (2001)

    14. D. Lederman, Y. Wang, E. H. Morales, R. J. Matelon, G. B. Cabrera, U. G. Volkmann, A. L. Cabrera, J. Appl. Phys. 101, 09E506 (2007)

    15. F. Yang, S. C. Kung, M. Cheng, J. C. Hemminger, R. M. Penner, ACS nano 4(9), 5233–5244 (2010)

    16. J. S. Jung, L. Malkinski, J. H. Lim, M. Yu, C. J. O. Connor, H. O. Lee, E. M. Kim, Bull. Korean Chem. Vol. 29, No. 4 (2008)

    17. K. T. Kim, S. J. Sim, S. M. Cho, IEEE. SEN. J, VOL. 6, NO.3 (2006)

    18. S. B. Choe, S. C. Shin, Phys. Rev. B, VOL. 57 (1998)

    19. K. Kim, M. Kim, S. M. Cho, K. Kim et al. Mater. Chem. Phys, 96, 278–282 (2006)

    20. T. Mitsui, M. K. Rose, E. Fomin, D. F. Ogletree, M. Salmeron, let. nature, 422, 705-707 (2003)

    21. F. Tian, J. Zhu, D. Wei, J. Phys. Chem, 111, 6994-6997 (2007)

    下載圖示
    QR CODE