簡易檢索 / 詳目顯示

研究生: 張財興
Zhang, Cai-Xing
論文名稱: 以理論計算探討 non-innocent Character of Electron Rich π-extended 8-oxyquinolate Ligands in Ruthenium(II) Bipyridyl 錯合物
Exploring the non-innocent Character of Electron Rich π-extended 8-oxyquinolate Ligands in Ruthenium(II) Bipyridyl Complexes
指導教授: 蔡明剛
Tsai, Ming-Kang
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2014
畢業學年度: 104
語文別: 中文
論文頁數: 131
中文關鍵詞: 太陽能染料電池
英文關鍵詞: 8-oxyquinolate Ligands
DOI URL: https://doi.org/10.6345/NTNU202204451
論文種類: 學術論文
相關次數: 點閱:91下載:42
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 提升太陽能染料電池的光電轉換效率,一直是科學家努力的目標。本篇研究針對 [Ru(dcbpy)2 (8-OQN)]+ (dcbpy=4, 4'-dicarboxy-2, 2' bipyridyl, and 8-OQN = 8-oxyquinolate)錯合物與 I- 進行電子轉移的分析,模擬過去文獻中染料與 I-/I3- 氧化還原對的反應機制,藉由 [Ru(dcbpy)2(5,7-di-X-8-OQN)]+ (X=H, F, Cl, Br, I, Me)系列的錯合物來計算,觀察推拉電子基對電子轉移能障的影響。

    The enhancement of the photoelectric conversion efficiency of dye-sensitized solar cells(DSSC) has been a consistently significant topic to scientist. In this work, we analyze the electron transfer of [Ru(dcbpy)2(8-OQN)]+ (dcbpy=4,4'-dicarboxy-2,2' bipyridyl, and 8-OQN=8-oxyquinolate) with I- , Simulating the reaction mechanism of dye and redox couple (I- /I3- ). Also, we change the complex to [Ru(dcbpy)2(5,7-di-X-8-OQN)]+ (X=H, F, Cl, Br, I, Me) to study the difference of the barrier of electron transfer with different electron push-pull functionalities.

    總目錄 圖目錄 IV 表目錄 VI PART_1 中文摘要 1 Abstract 1 第一章 緒論 2 1-1 前言 2 1-2 染料敏化太陽能電池的發展背景 3 1-3 染料敏化太陽能電池的結構與工作原理 4 1-4 氧化態染料被電解質還原的反應機制 7 第二章 計算原理 9 2-1 量子力學 9 2-2 計算化學的理論及方法 10 2-2-1 密度泛函理論 (DENSITY FUNCTIONAL THEORY) 10 2-2-2 基底函數 (BASIS SETS) 11 2-3 計算方法 12 2-3-1單點能量 (SINGLE POINT ENERGY) 12 2-3-2幾何優化 (GEOMETRY OPTIMIZATIONS) 12 2-3-3振動頻率 (FREQUENCY) 13 2-3-4溶劑效應 13 2-4 本論文使用的計算方法 14 第三章 結果與討論 15 3-1 研究目標 15 3-2 幾何結構討論 15 3-3 染料和第一個I-電子轉換 18 3-3-1 YE05_X和第一個I-的電子轉換能障分析 18 3-3-2 RU-8-OQN_Y和第一個I-的電子轉換能障分析 23 3-4染料和第二個I-電子轉換 28 3-4-1 YE05_X和第二個I- 的電子轉換能障分析 28 3-4-2 RU-8-OQN_Y和第二個I- 的電子轉換能障分析 33 3-5 I- 單獨與官能基的結合能 38 第四章 結論 40 第五章 參考文獻 41 PART_2 SYNOPSIS ABSTRACT 45 中文摘要 46 Introduction 47 Results and Discussion 51 Synthesis. 51 Computational analysis 52 UV/Vis electronic absorption spectra and TDDFT. 56 Electrochemistry 61 EPR and UV/Vis/NIR spectroelectrochemistry 64 Conclusions 70 Experimental Section 71 Computational Details 72 References 78 Supporting Information 82 Supporting Information Contents 83 圖目錄 PART_1 Figure 1: DSSC的結構圖。 4 Figure 2: DSSC工作原理的路徑圖。 5 Figure 3: DSSC 運作機制的相對時間圖。 6 Figure 4:勢能面(Potential Energy Surface, PES)的示意圖。 13 Figure 5: RuIII-8-OQN、RuIII-8-OQN-I-和RuII-8-OQN-I2-的幾何結構。 16 Figure 6: YE05+2、YE05+2-I- 和YE05+1-I2- 的幾何結構。 17 Figure 7: YE05_X (X=H、F、Cl、Br、I、Me)的幾何結構。 18 Figure 8-13: YE05_X+1跟I- 之間的相對距離和能量;YE05_X跟I.之間的相對距離和能量(X= H、F、Cl、Br、I、Me)。 19-21 Figure 14: Ru-8-OQN_Y (Y=H、F、Cl、Br、I、Me)的幾何結構。 23 Figure 15-20: Ru-8-OQN_Y+1跟I- 之間的相對距離和能量;Ru-8-OQN_Y跟I.之間的相對距離和能量(X= H、F、Cl、Br、I、Me)。 24-26 Figure 21: [YE05_Y.I-] (Y=H、F、Cl、Br、I、Me)的幾何結構。 28 Figure 22-27: [YE05_X+1.I-]跟I-之間的相對距離和能量;[YE05_X.I-]跟I.之間的相對距離和能量(X= H、F、Cl、Br、I、Me)。 29-31 Figure 28: [Ru-8-OQN_X.I-] (X=H、F、Cl、Br、I、Me)的幾何結構。 33 Figure 29-34: [Ru-8-OQN_Y+1.I-]跟I-之間的相對距離和能量;[Ru-8-OQN_Y.I-]跟I.之間的相對距離和能量(X= H、F、Cl、Br、I、Me)。 34-36 PART_2 Figure 1: Structures of [Ru(bpy)2(R-OQN)]+ complexes 2+ – 8+ here investigated including the [Ru(bpy)3]2+ reference complex 12+. 50 Figure 2: Aerial and side-on perspective views of both the HOMO and HOMO-3 levels for 2+ illustrating the π-bonding/anti-bonding combination of Ru(dπ) and OQN(π) systems. 53 Figure 3: Percentage contributions of Ru, OQN, TPA and bpy fragments to frontier molecular orbitals of 8+. 54 Figure 4: A plot of molecular orbital energy levels (eV) for complexes 12+ - 8+. 55 Figure 5: Overlay of UV/Vis electronic absorption spectra of select complexes (for clarity) recorded in acetonitrile. 56 Figure 6: An overlay of experimental and theoretical TD-DFT spectra for 8+ in acetonitrile. 57 Figure 7: Select molecular orbitals for 8+ determined responsible for the major UV/Vis electronic transitions by TD-DFT analysis. 58 Figure 8: Overlay of cyclic voltammograms for 12+ [Ru(bpy)3]2+, and the 5,7-substituted [Ru(bpy)2(R-OQN)]+ derivatives 6+, 7+ and 8+. 63 Figure 9: X-band EPR (9.5 GHz) spectroelectrochemical data for 62+ and 82+. 66 Figure 10: Mulliken spin-density analysis illustrating hole-delocalization onto the R-OQN ligands of 22+ - 82+, relative to the spin-localized [RuIII(bpy)3]3+ system 13+. 67 Figure 11: UV/Vis/NIR electronic absorption data of 82+. 69 Figure 12: Overlay of UV/Vis/NIR electronic absorption data recorded following controlled potential electrolysis of 13+ and complexes 22+, 32+, 62+, 72+ and 82+. 70 表目錄 PART_1 Table 1: RuIII-8-OQN、RuIII-8-OQN-I-和RuII-8-OQN-I2-的鍵長鍵角表。 16 Table 2: YE05+2、YE05+2-I-和YE05+1-I2-的鍵長鍵角表。 17 Table 3: YE05_X (X=H、F、Cl、Br、I、Me)與I-電子轉移的能量障礙與相對距離表。 22 Table 4: Ru-8-OQN_Y (X=H、F、Cl、Br、I、Me)與I-電子轉移的能量障礙與相對距離表。 27 Table 5: [YE05_Y.I-] (Y=H、F、Cl、Br、I、Me)與第二I-電子轉移的能量障礙與相對距離表。 32 Table 6: [Ru-8-OQN_X.I-] (Y=H、F、Cl、Br、I、Me)與第二I-電子轉移的能量障礙與相對距離表。 37 Table 7:利用B3LYP、MP2與CCSD(T) functional計算出結合能和相對距離。 38 PART_2 Table 1: Metal-ligand contributions (%) to the HOMO of complexes 12+- 8+. 53 Table 2: Electronic absorption and phosphorescence emission data for complexes 12+-8+. 59 Table 3: Electrochemical data for selected complexes 12+ - 8+. 63 Table 4: EPR data of complexes following one electron oxidation. 66 Table 5: UV/Vis/NIR electronic absorption data for complexes 13+- 82+. 69

    1. Romain, S.; Vigara, L.; Llobet, A., Acc. Chem. Res. 2009, 42, 1944-1953.
    2. Concepcion, J. J.; Jurss, J. W.; Brennaman, M. K.; Hoertz, P. G.; Patrocinio, A. O. T.; Murakami Iha, N. Y.; Templeton, J. L.; Meyer, T. J., Acc. Chem. Res. 2009, 42, 1954-1965.
    3. Chen, Z.; Chen, C.; Weinberg, D. R.; Kang, P.; Concepcion, J. J.; Harrison, D. P.; Brookhart, M. S.; Meyer, T. J., Chem. Comm. 2011, 47, 12607-12609.
    4. Windle, C. D.; Perutz, R. N., Coord. Chem. Rev. 2012, 256, 2562-2570.
    5. Wang, C.; Ma, X.-X.; Li, J.; Xu, L.; Zhang, F.-x., J. Mol. Cat. A. Chemical 2012, 363, 108-114.
    6. Suzuki, T. M.; Nakamura, T.; Saeki, S.; Matsuoka, Y.; Tanaka, H.; Yano, K.; Kajino, T.; Morikawa, T., J. Mater. Chem. 2012, 22, 24584-24590.
    7. Ohtsu, H.; Tanaka, K., Angew. Chem. Int. Ed. 2012, 51, 9792-9795.
    8. Anderson, S.; Constable, E. C.; Dare-Edwards, M. P.; Goodenough, J. B.; Hamnett,
    A.; Seddon, K. R.; Wright, R. D., Nature 1979, 280, 571-573.
    9. Ardo, S.; Meyer, G. J., Chem. Soc. Rev. 2009, 38, 115-164.
    10. Johansson, P. G.; Zhang, Y.; Abrahamsson, M.; Meyer, G. J.; Galoppini, E., Chem. Comm. 2011, 47, 6410-6412.
    11. Heuer, W. B.; Xia, H.-L.; Ward, W.; Zhou, Z.; Pearson, W. H.; Siegler, M. A.; Narducci Sarjeant, A. A.; Abrahamsson, M.; Meyer, G. J., Inorg. Chem. 2012, 51, 3981-3988.
    12. Coe, B. J.; Harris, J. A.; Brunschwig, B. S.; Asselberghs, I.; Clays, K.; Garin, J.; Orduna, J., J. Am. Chem. Soc. 2005, 127, 13399-13410.
    13. Coe, B. J., Acc. Chem. Res. 2006, 39, 383-393.
    14. Gauthier, N.; Argouarch, G.; Paul, F.; Toupet, L.; Ladjarafi, A.; Costuas, K.; Halet, J.-F.; Samoc, M.; Cifuentes, M. P.; Corkery, T. C.; Humphrey, M. G., Chem. Eur. J. 2011, 17, 5561-5577.
    15. Kalyanasundaram, K., Coord. Chem. Rev. 1982, 46, 159-244.
    16. McCusker, C. E.; McCusker, J. K., Inorg. Chem. 2011, 50, 1656-1669.
    17. Juris, A.; Balzani, V.; Barigelletti, F.; Campagna, S.; Belser, P.; Vonzelewsky, A., Coord. Chem. Rev. 1988, 84, 85-277.
    18. England, J.; Scarborough, C. C.; Weyhermueller, T.; Sproules, S.; Wieghardt, K., Eur. J. Inorg. Chem. 2012, 4605-4621.
    19. Ward, M. D.; McCleverty, J. A., J. Chem. Soc. Dalton. Trans. 2002, 275-288
    20. Kaim, W.; Sarkar, B., Coord. Chem. Rev. 2007, 251, 584-594.
    21. Ray, K.; Petrenko, T.; Wieghardt, K.; Neese, F., Dalton Trans. 2007, 1552-1566.
    22. Kaim, W.; Schwederski, B., Coord. Chem. Rev. 2010, 254, 1580-1588.
    23. Eisenberg, R., Coord. Chem. Rev. 2011, 255, 825-836.
    24. Kaim, W., Inorg. Chem. 2011, 50, 9752-9765.
    25. de Bruin, B., Eur. J. Inorg. Chem. 2012, 340-342.
    26. Lyaskovskyy, V.; de Bruin, B., ACS Catal. 2012, 2, 270-279.
    27. Kaim, W., Eur. J. Inorg. Chem. 2012, 343-348.
    28. Chan, S.-C.; England, J.; Lee, W.-C.; Wieghardt, K.; Wong, C.-Y., Chempluschem 2013, 78, 214-217.
    29. Kar, S.; Sarkar, B.; Ghumaan, S.; Leboschka, M.; Fiedler, J.; Kaim, W.; Lahiri, G. K., Dalton Trans. 2007, 1934-1938.
    30. Das, A.; Scherer, T. M.; Mondal, P.; Mobin, S. M.; Kaim, W.; Lahiri, G. K., Chem. Eur. J. 2012, 18, 14434-14443.
    31. Boyer, J. L.; Rochford, J.; Tsai, M. K.; Muckerman, J. T.; Fujita, E., Coord. Chem. Rev. 2010, 254, 309-330.
    32. Kober, E. M.; Meyer, T. J., Inorg. Chem. 1982, 21, 3967-3977.
    33. Daul, C.; Baerends, E. J.; Vernooijs, P., Inorg. Chem. 1994, 33, 3538-3543.
    34. Campagna, S.; Puntoriero, F.; Nastasi, F.; Bergamini, G.; Balzani, V., Photochemistry and photophysics of coordination compounds: Ruthenium. Springer-Verlag: Berlin, 2007; Vol. 280, p 117-214.
    35. Treadway, J. A.; Loeb, B.; Lopez, R.; Anderson, P. A.; Keene, F. R.; Meyer, T. J., Inorg. Chem. 1996, 35, 2242-2246.
    36. O’Donnell, R. M.; Johansson, P. G.; Abrahamsson, M.; Meyer, G. J., Inorg. Chem. 2013, 52, 6839-6848.
    37. Sun, Q.; Mosquera-Vazquez, S.; Lawson Daku, L. M.; Guénée, L.; Goodwin, H. A.; Vauthey, E.; Hauser, A., J. Am. Chem. Soc. 2013, 135, 13660-13663.
    38. Robson, K. C. D.; Bomben, P. G.; Berlinguette, C. P., Dalton Trans. 2012, 41, 7814-7829.
    39. Bhattacharya, S., Polyhedron 1993, 12, 235-239.
    40. Leung, C.-F.; Wong, C.-Y.; Ko, C.-C.; Yuen, M.-C.; Wong, W.-T.; Wong, W.-Y.; Lau, T.-C., Inorg. Chim. Acta 2009, 362, 1149-1157.
    41. Sears, R. B.; Joyce, L. E.; Turro, C., J. Photochem. Photobio. 2010, 86, 1230-1236.
    42. El Ojaimi, M.; Thummel, R. P., Inorg. Chem. 2011, 50, 10966-10973.
    43. Zhao, H. C.; Harney, J. P.; Huang, Y.-T.; Yum, J.-H.; Nazeeruddin, M. K.; Grätzel, M.; Tsai, M.-K.; Rochford, J., Inorg. Chem. 2011, 51, 1-3.
    44. Tong, L.; Wang, Y.; Duan, L.; Xu, Y.; Cheng, X.; Fischer, A.; Ahlquist, M. S. G.; Sun, L., Inorg. Chem. 2012, 51, 3388-3398.
    45. Qin, Y.; Kiburu, I.; Shah, S.; Jakle, F., Org. Lett. 2006, 8, 5227-5230.
    46. Qin, Y.; Kiburu, I.; Shah, S.; Jäkle, F., Macromolecules 2006, 39, 9041-9048.
    47. Heiskanen, J. P.; Hormi, O. E. O., Tetrahedron 2009, 65, 518-524.
    48. Heiskanen, J. P.; Hormi, O. E. O., Tetrahedron 2009, 65, 8244-8249.
    49. Perez-Bolivar, C.; Llovera, L.; Lopez, S. E.; Anzenbacher, P., Jr., J. Lumin. 2010, 130, 145- 152.
    50. Perez-Bolivar, C.; Takizawa, S. Y.; Nishimura, G.; Montes, V. A.; Anzenbacher, P., Chem. Eur. J. 2011, 17, 9076-9082.
    51. Zlojutro, V.; Sun, Y.; Hudson, Z. M.; Wang, S., Chem. Comm. 2011, 47, 3837-3839.
    52. Shoji, E.; Miyatake, K.; Hlil, A. R.; Hay, A. S.; Maindron, T.; Jousseaume, V.; Dodelet, J. P.; Tao, Y.; D'Iorio, M., Journal of Polymer Science Part a-Polymer
    Chemistry 2003, 41, 3006- 3016.
    53. Kulkarni, A.; Torok, B., Green Chemistry 2010, 12, 875-878.
    54. Juris, A.; Balzani, V.; Barigelletti, F.; Campagna, S.; Belser, P.; Vonzelewsky, A., Coord. Chem. Rev. 1988, 84, 85-277.
    55. Suzuki, K.; Kobayashi, A.; Kaneko, S.; Takehira, K.; Yoshihara, T.; Ishida, H.; Shiina, Y.; Oishic, S.; Tobita, S., Phys. Chem. Chem. Phys. 2009, 11, 9850-9860.
    56. Caspar, J. V.; Meyer, T. J., J. Am. Chem. Soc. 1983, 105, 5583-5590.
    57. Durham, B.; Caspar, J. V.; Nagle, J. K.; Meyer, T. J., J. Am. Chem. Soc. 1982, 104, 4803-4810.
    58. Cherry, W. R.; Henderson, L. J., Inorg. Chem. 1984, 23, 983-986.
    59. Hu, K.; Robson, K. C. D.; Johansson, P. G.; Berlinguette, C. P.; Meyer, G. J., J. Am. Chem. Soc. 2012, 134, 8352-8355.
    60. Patra, S.; Sarkar, B.; Mobin, S. M.; Kaim, W.; Lahiri, G. K., Inorg. Chem. 2003, 42, 6469-6473.
    61. Weisser, F.; Huebner, R.; Schweinfurth, D.; Sarkar, B., Chem. Eur. J. 2011, 17,5727-5736.
    62. DeSimone, R. E.; Drago, R. S., J. Am. Chem. Soc. 1970, 92, 2343-2352.
    63. Zhao, H. C.; Fu, B.-L.; Schweinfurth, D.; Harney, J. P.; Sarkar, B.; Tsai, M.-K.; Rochford, J., Eur. J. Inorg. Chem. 2013, 2013, 4410-4420.
    64. Fulmer, G. R.; Miller, A. J. M.; Sherden, N. H.; Gottlieb, H. E.; Nudelman, A.; Stoltz, B. M.; Bercaw, J. E.; Goldberg, K. I., Organometallics 2010, 29, 2176-2179.
    65. Connelly, N. G.; Geiger, W. E., Chem. Rev. 1996, 96, 877-910.
    66. Fajer, J.; Fujita, I.; Davis, M. S.; Forman, A.; Hanson, L. K.; Smith, K. M., Adv. Chem. Ser. 1982, 489-513.
    67. Frisch M. J. et al. Gaussian 09, Revision A.1; Gaussian Inc.: Wallingford, CT., 2009.
    68. Roy, L. E.; Hay, P. J.; Martin, R. L., J. Chem. Theory Comput. 2008, 4, 1029-1031.
    69. Harihara.Pc; Pople, J. A., Theoretica Chimica Acta 1973, 28, 213-222.
    70. Francl, M. M.; Pietro, W. J.; Hehre, W. J.; Binkley, J. S.; Gordon, M. S.; Defrees, D. J.; Pople, J. A., J. Chem. Phys. 1982, 77, 3654-3665.
    71. Tomasi, J.; Mennucci, B.; Cammi, R., Chem. Rev. 2005, 105, 2999-3093.
    72. Scalmani, G.; Frisch, M. J.; Mennucci, B.; Tomasi, J.; Cammi, R.; Barone, V., J.Chem.Phys. 2006, 124, 94107.
    73. Sullivan, B. P.; Salmon, D. J.; Meyer, T. J., Inorg. Chem. 1978, 17, 3334-3341.

    下載圖示
    QR CODE