研究生: |
詹敦皓 Chan, Tun-Hao |
---|---|
論文名稱: |
格林函數在不同切口奈米碳管的研究 Green’s Function Study for Carbon Nanotube Leads of Various cuts |
指導教授: |
陳穎叡
Chen, Yiing-Rei |
學位類別: |
碩士 Master |
系所名稱: |
物理學系 Department of Physics |
論文出版年: | 2020 |
畢業學年度: | 108 |
語文別: | 英文 |
論文頁數: | 50 |
中文關鍵詞: | 奈米碳管 、格林函數 、態密度 、緊束縛模型 、邊界態 |
英文關鍵詞: | carbon nanotubes, Green's funciton, density of states, tight-binding method, edge states |
DOI URL: | http://doi.org/10.6345/NTNU202001086 |
論文種類: | 學術論文 |
相關次數: | 點閱:117 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在這個論文中我們透過格林函數研究了三種不同切口的奈米碳管的態密度及局部態 密度。這三種切口分別為:(1) 正切 (n, n) 扶倚奈米碳管、(2) 正切 (n, n) 鋸齒奈米碳 管以及 (3) 斜切 (n, n) 扶倚奈米碳管。我們透過兩種方法計算格林函數:(1) 迭代法以 及 (2) 積分法,其中迭代法利用到半無限系統的幾何自相似的特質,而積分法則是把石 墨烯上的 k 態來線性組合成符合邊界條件的態並對所有允許的態除以 (E − E λ k + i η ) 求 和。透過比較態密度與局部態密度我們發現在正切扶倚奈米碳管有週期性震盪、正切 鋸齒奈米碳管有邊界態,而這兩個現象在斜切扶椅奈米碳管都有發現。我們並利用拿 表面格林函數來研究斜切 (8, 8) 扶倚奈米碳管的透射率。
In this thesis, we study the density of states (DOS) and the local density of states (LDOS) of three different types of carbon nanotube (CNT electrodes): (1) cross-cut (n, n) armchair CNTs, (2) cross-cut (n, 0) zigzag CNTs, (3) angle-cut (n, n) armchair CNTs, by exploiting the relation between the Green’s function and the DOS. We employ two ways to calculate the Green’s function : (1) The iterative method which makes use of the recursive structure of a semi-infinte system, and (2) the integration method, through which we construct linear combined wavefunctions out of bulk CNT states, so as to meet the boundary conditions of the cut. By comparing the DOS and the LDOS we find oscillations of a 3-layer cycle in cross-cut armchair CNTs and localized edge states in both cross-cut zigzag CNTs and in angle-cut armchair CNTs. The surface Green’s functions calculated in this work are used in the study of transmission, also performed in our group.
[1] S. Iijima, “Helical microtubules of graphitic carbon”, Nature, vol. 354, no. 6348, pp. 56–58, 1991.
[2] J. W. Mintmire, B. I. Dunlap, and C. T. White, “Are fullerene tubules metallic?”, Phys. Rev. Lett., vol. 68, pp. 631–634, Feb 1992.
[3] M.-F. Yu, O. Lourie, M. J. Dyer, K. Moloni, T. F. Kelly, and R. S. Ruoff, “Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load”, Science, vol. 287, no. 5453, pp. 637–640, 2000.
[4] J.-C. Charlier, X. Blase, and S. Roche, “Electronic and transport properties of nanotubes”, Rev. Mod. Phys., vol. 79, pp. 677–732, May 2007.
[5] T. Miyake and S. Saito, “Quasiparticle band structure of carbon nanotubes”, Phys. Rev. B, vol. 68, pp. 155424, Oct 2003.
[6] K. Wakabayashi, “Edge States and Flat Bands of Graphene Nanoribbons with Edge Modification”, J. Phys. SOC. Jpn 79, 034706, 2010
[7] J. Velev and W. Butler, “On the equivalence of different techniques for evaluating the green function for a semi-infinite system using a localized basis”, Journal of Physics: Condensed Matter, vol. 16, pp. R637–R657, May 2004.
[8] M. Paulsson, “Non-equilibrium green’s functions for dummies: Introduction to the one particle negf equations”, arXiv:cond-mat/0210519v2, 2002.
[9] Ryu, Shinsei and Hatsugai, Yasuhiro, “Topological Origin of Zero-Energy Edge States in Particle-Hole Symmetric Systems”, Phys. Rev. Lett., vol. 89, pp. 077002–077005, Jul 2002.
[10] Kane, C. L. and Mele, E. J., “Size, shape, and low energy electronic structure of carbon nanotubes”, Phys. Rev. Lett., vol. 78, pp. 1932–1935 Mar 1997
[11] Yiing-Rei Chen, Lei Zhang, and Mark S. Hybertsen, “Theoretical study of trends in conductance for molecular junctions formed with armchair carbon nanotube electrodes”, Phys. Rev. B, vol. 76, pp. 115408, Sep 2007.
[12] Yiing-Rei chen, Ming-Kuan Lin, Dun-Hao Chan, Kuan-Bo Lin and chao-cheng Kaun, “Ab Initio and Theoretical Study on Electron Transport through Polyene Junctions in between Carbon Nanotube Leads of Various Cuts”, Sci Rep 10, 8033 (2020)
[13] Bo-Hung Chen, and Dah-Wei Chiou, “A rigorous proof of bulk-boundary correspondence in the generalized Su-Schrieffer-Heeger model”, Phys. Lett. A, vol. 384, pp. 126168, Mar 2020.
[14] S. Datta, Quantum Transport: Atom to Transistor (Cambridge University Press, New York, 2005).
[15] L. E. F. Foa Torres, S. Roche, Jean-Christophe Charlier, “Introduction to Graphene-Based Nanomaterials”, (Cambridge University Press, New York, 2014)