研究生: |
李金祝 Chin Chu Lee |
---|---|
論文名稱: |
HIC1基因變異參與臺灣肺癌形成及其受p53/SIRT1蛋白調控之機制研究 HIC1 alteration and its association with deregulation of p53/SIRT1-mediated control in lung cancer |
指導教授: |
王憶卿
Wang, Yi-Ching |
學位類別: |
碩士 Master |
系所名稱: |
生命科學系 Department of Life Science |
論文出版年: | 2006 |
畢業學年度: | 94 |
語文別: | 中文 |
論文頁數: | 57 |
論文種類: | 學術論文 |
相關次數: | 點閱:259 下載:8 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
研究背景:在癌症病人的研究中發現,位於染色體17p13.3的Hypermethylated in Cancer (HIC1) 抑癌基因常發生DNA啟動子過度甲基化 (promoter hypermethylation),以及異質性缺失 (loss of heterozygosity, LOH) 情形。我們實驗室先前的研究結果也顯示,臺灣地區肺癌病人在染色體17p13區域發生LOH的頻率高達55 %,因此我們懷疑是否位於17p13.3的HIC1基因會參與肺癌形成。目前也知,當細胞受到DNA傷害時,HIC1基因/蛋白,SIRT1去乙醯酶及p53蛋白彼此之間呈現環形 (circular regulation) 的調控關係。所以,本研究便針對台灣地區的肺癌病人其HIC1基因變異情形以及HIC1基因/蛋白受p53/SIRT1蛋白調控情況做研究。材料與方法:我們分析了108個非小細胞肺癌 (non-small cell lung cancer, NSCLC) 病人的HIC1蛋白表現、mRNA表現及啟動子過度甲基化情形,並將變異結果和臨床病歷資料做相關的統計分析。我們使用西方墨點法 (Western blot),觀察病人HIC1蛋白、乙醯化p53及SIRT1去乙醯酶表現情形,再以反轉錄--聚合酵素鏈反應 (Reverse-transcriptase polymerase chain reaction, RT-PCR) 分析組織細胞中HIC1基因mRNA轉錄是否異常,續以聚合酵素鏈反應為基礎的甲基化分析 (methylation-specific PCR, MSP) 偵測HIC1基因的啟動子過度甲基化頻率。結果:我們發現NSCLC病人HIC1蛋白低表達頻率達65.5%, HIC mRNA有75.9%呈現低表達情形,且HIC1啟動子甲基化頻率達40%;另外,蛋白質/mRNA、mRNA/啟動子甲基化表現彼此間都呈統計上顯著相關性 (P=0.045)。除此之外,HIC1 mRNA是低表達者中有87.5% (28/32) 的病人其p53蛋白為去乙醯化的病人,且統計上達顯著相關性 (P=0.016);此外,HIC1蛋白有表達的病人當中,有69% (20/29) 病人,其SIRT1蛋白是低表達 (P=0.004);再者,SIRT1蛋白低表達的病人之中,有75% (39/52) 的病人其p53蛋白有乙醯化情形 (P=0.002)。另外,本研究利用去甲基化藥物5’-Aza-2’-dC (5’-aza -2’-deoxycytidine) 及SIRT1的抑制劑Nicotinamide (Vitamin B3) 處理肺癌細胞株A549,結果發現:A549經5’-Aza-2’-dC處理之後,HIC1基因啟動子會被去甲基化,且HIC1基因mRNA的表現量也會上升;而A549經SIRT1抑制劑Nicotinamide處理之後,SIRT1蛋白表現量在處理8小時候逐漸下漸,乙醯化p53及HIC1蛋白則在處理12小時後上升,進一步分析HIC1 mRNA表現情形,也在處理藥物12小時後上升。最後,本研究將HIC1變異情形、p53去乙醯化及SIRT1表現情況和臨床病歷資料做統計相關性分析,結果發現,在AD的病人中,HIC1啟動子過度甲基化頻率比SQ的病人來得明顯,統計上達邊緣顯著相關 (P=0.059),而在SQ病人中,則發現p53去乙醯化頻率比AD的病人來得明顯,且達統計上的相關 (P=0.046);因此我們推測:AD的病人其HIC1基因的變異可能傾向於是啟動子過度甲基化所造成,而SQ病人其HIC1基因的變異則可能傾向於是p53去乙醯化所導致。結論:本研究證實,HIC1變異情形確實在肺癌形成過程中扮演一個很重要的角色,其表現變異的機制主要透過啟動子過度甲基化及p53異常去乙醯化所致,我們的研究是第一篇在癌組織樣本中,同時探討HIC1/SIRT1/p53彼此之間分子調控關係參與癌症形成的研究。
Purpose: We have previously reported that the chromosomal regions at 17p13.3 showed a high frequency of loss of heterozygosity in tumors from non-small cell lung cancer (NSCLC) patients. HIC1 (hypermethylated in cancer 1) is a candidate tumor suppressor gene at 17p13.3 and is epigenetically inactivated in many human cancers. A circular regulation of HIC1, SIRT1 deacetylase, and p53 is proposed for modulation of cellular responses to DNA damage in cell and animal studies. However, the etiological role of HIC1 alteration and its correlation with p53 and SIRT1 deregulation have never been examined in the same series of human cancer patients. Therefore, we investigated the alterations of HIC1 at the DNA, RNA, and protein levels, and their correlation with deregulation of p53/SIRT-mediated control in lung cancer. Materials and Methods: The alterations of HIC1 including loss of protein/mRNA expression and promoter hypermethylation as well as their clinical correlations were examined in 108 NSCLC patients. In addition, the expression of acetylated p53 and SIRT1 deacetylase was examined by Western blot. We also treated A549 lung cancer cell line with demethylation reagent 5’aza 2’deoxycytidine (5’-Aza-2’-dC) and SIRT1 inhibitor nicotinamide (vitamin B3) to investigate the effects in the regulation of HIC1, p53 and SIRT1. Results: Overall, 65.5%, 75.9%, and 40% of NSCLC patients showed low protein, low mRNA, and promoter hypermethylation for HIC1 gene, respectively. A high concordance was observed between low mRNA expression and promoter hypermethylation for the HIC1 gene (P<0.05). Low mRNA expression of HIC1 was significantly associated with low acetylated p53, supporting that HIC1 is a transactivating target of p53 (P=0.016). In addition, low acetylated p53 is significantly associated with high SIRT1 protein (P=0.002), and high SIRT1 protein is significantly associated with low HIC1 protein (P=0.004). In addition, in the A549 lung cancer cells, which showed low levels of HIC1 mRNA and promoter hypermethylation, treated with demethylation reagent 5’-Aza-2’-dC, the HIC1 mRNA and protein expressions were restored along with the demethylation of HIC1 promoter. In the A549 cells treated with SIRT1 inhibitor nicotinamide, an increase of p53 acetylation and HIC1 re-expression were seen. In addition, promoter hypermethylation of HIC1 gene was tended to be associated with adenocarcinomas than with squamous carcinomas (P=0.059), whereas deacetylation of p53 was tended to be associated with squamous carcinomas than with adenocarcinomas (P=0.046). Conclusion: HIC1 alteration plays an important role in lung tumorigenesis and the predominant mechanisms of HIC inactivation were HIC1 promoter hypermethylation and p53 deacetylation. The present study shows the first clinical evidence that alteration of HIC1/SIR1/p53 pathway is involved in tumorigenesis.
1. Department of Health, The executive Yuan, Republic of China. General Health Statistics, 2006. In: Health and Vital Statistics, Republic of China. R. O. C. Press, Taipei, http://www.doh.gov.tw/statistic/index.htm
2. Honma, H. [Classification of lung cancer by disease stage, symptom type and histological type]. Naika, 18: 832-836, 1966.
3. Lee, C. S. and Cooper, W. A. Asbestos exposure and lung cancer. Pathology, 36: 513-514, 2004.
4. De Vuyst, P., Dumortier, P., Jacobovitz, D., Emri, S., Coplu, L., and Baris, Y. I. Environmental asbestosis complicated by lung cancer. Chest, 105: 1593-1595, 1994.
5. Samet, J. M. Environmental causes of lung cancer: what do we know in 2003? Chest, 125: 80S-83S, 2004.
6. Sasaki, M., Sugio, K., Kuwabara, Y., Koga, H., Nakagawa, M., Chen, T., Kaneko, K., Hayashi, K., Shioyama, Y., Sakai, S., and Honda, H. Alterations of tumor suppressor genes (Rb, p16, p27 and p53) and an increased FDG uptake in lung cancer. Ann Nucl Med, 17: 189-196, 2003.
7. Sozzi, G., Pastorino, U., Moiraghi, L., Tagliabue, E., Pezzella, F., Ghirelli, C., Tornielli, S., Sard, L., Huebner, K., Pierotti, M. A., Croce, C. M., and Pilotti, S. Loss of FHIT function in lung cancer and preinvasive bronchial lesions. Cancer Res, 58: 5032-5037, 1998.
8. Wang, Y. C., Lu, Y. P., Tseng, R. C., Lin, R. K., Chang, J. W., Chen, J. T., Shih, C. M., and Chen, C. Y. Inactivation of hMLH1 and hMSH2 by promoter methylation in primary non-small cell lung tumors and matched sputum samples. J Clin Invest, 111: 887-895, 2003.
9. Makos, M., Nelkin, B. D., Lerman, M. I., Latif, F., Zbar, B., and Baylin, S. B. Distinct hypermethylation patterns occur at altered chromosome loci in human lung and colon cancer. Proc Natl Acad Sci U S A, 89: 1929-1933, 1992.
10. Makos, M., Nelkin, B. D., Reiter, R. E., Gnarra, J. R., Brooks, J., Isaacs, W., Linehan, M., and Baylin, S. B. Regional DNA hypermethylation at D17S5 precedes 17p structural changes in the progression of renal tumors. Cancer Res, 53: 2719-2722, 1993.
11. Makos, M., Nelkin, B. D., Chazin, V. R., Cavenee, W. K., Brodeur, G. M., and Baylin, S. B. DNA hypermethylation is associated with 17p allelic loss in neural tumors. Cancer Res, 53: 2715-2718, 1993.
12. Wales, M. M., Biel, M. A., el Deiry, W., Nelkin, B. D., Issa, J. P., Cavenee, W. K., Kuerbitz, S. J., and Baylin, S. B. p53 activates expression of HIC-1, a new candidate tumour suppressor gene on 17p13.3. Nat Med, 1: 570-577, 1995.
13. Dong, S. M., Kim, H. S., Rha, S. H., and Sidransky, D. Promoter hypermethylation of multiple genes in carcinoma of the uterine cervix. Clin Cancer Res, 7: 1982-1986, 2001.
14. Fujii, H., Biel, M. A., Zhou, W., Weitzman, S. A., Baylin, S. B., and Gabrielson, E. Methylation of the HIC-1 candidate tumor suppressor gene in human breast cancer. Oncogene, 16: 2159-2164, 1998.
15. Rathi, A., Virmani, A. K., Schorge, J. O., Elias, K. J., Maruyama, R., Minna, J. D., Mok, S. C., Girard, L., Fishman, D. A., and Gazdar, A. F. Methylation profiles of sporadic ovarian tumors and nonmalignant ovaries from high-risk women. Clin Cancer Res, 8: 3324-3331, 2002.
16. Issa, J. P., Zehnbauer, B. A., Kaufmann, S. H., Biel, M. A., and Baylin, S. B. HIC1 hypermethylation is a late event in hematopoietic neoplasms. Cancer Res, 57: 1678-1681, 1997.
17. Issa, J. P., Baylin, S. B., and Herman, J. G. DNA methylation changes in hematologic malignancies: biologic and clinical implications. Leukemia, 11 Suppl 1: S7-11, 1997.
18. Melki, J. R., Vincent, P. C., and Clark, S. J. Cancer-specific region of hypermethylation identified within the HIC1 putative tumour suppressor gene in acute myeloid leukaemia. Leukemia, 13: 877-883, 1999.
19. Melki, J. R., Vincent, P. C., and Clark, S. J. Concurrent DNA hypermethylation of multiple genes in acute myeloid leukemia. Cancer Res, 59: 3730-3740, 1999.
20. Rathi, A., Virmani, A. K., Harada, K., Timmons, C. F., Miyajima, K., Hay, R. J., Mastrangelo, D., Maitra, A., Tomlinson, G. E., and Gazdar, A. F. Aberrant methylation of the HIC1 promoter is a frequent event in specific pediatric neoplasms. Clin Cancer Res, 9: 3674-3678, 2003.
21. Yokota, J., Wada, M., Shimosato, Y., Terada, M., and Sugimura, T. Loss of heterozygosity on chromosomes 3, 13, and 17 in small-cell carcinoma and on chromosome 3 in adenocarcinoma of the lung. Proc Natl Acad Sci U S A, 84: 9252-9256, 1987.
22. Inoue, Y., Miki, C., Watanabe, H., Ojima, E., and Kusunoki, M. Genomic instability and tissue expression of angiogenic growth factors in sporadic colorectal cancer. Surgery, 139: 305-311, 2006.
23. Rogowski, M., Walenczak, I., Pepinski, W., Skawronska, M., Sieskiewicz, A., and Klatka, J. Loss of heterozygosity in laryngeal cancer. Rocz Akad Med Bialymst, 49: 262-264, 2004.
24. Chmara, M., Wozniak, A., Ochman, K., Kobierska, G., Dziadziuszko, R., Sosinska-Mielcarek, K., Jassem, E., Skokowski, J., Jassem, J., and Limon, J. Loss of heterozygosity at chromosomes 3p and 17p in primary non-small cell lung cancer. Anticancer Res, 24: 4259-4263, 2004.
25. Zhang, S. H., Cong, W. M., Xian, Z. H., and Wu, M. C. Clinicopathological significance of loss of heterozygosity and microsatellite instability in hepatocellular carcinoma in China. World J Gastroenterol, 11: 3034-3039, 2005.
26. Orita, H., Sakamoto, N., Ajioka, Y., Terai, T., Hino, O., Sato, N., Shimoda, T., Kamano, T., Tsurumaru, M., and Fujii, H. Allelic loss analysis of early-stage flat-type colorectal tumors. Ann Oncol, 17: 43-49, 2006.
27. Feltmate, C. M., Lee, K. R., Johnson, M., Schorge, J. O., Wong, K. K., Hao, K., Welch, W. R., Bell, D. A., Berkowitz, R. S., and Mok, S. C. Whole-genome allelotyping identified distinct loss-of-heterozygosity patterns in mucinous ovarian and appendiceal carcinomas. Clin Cancer Res, 11: 7651-7657, 2005.
28. Radford, D. M., Fair, K. L., Phillips, N. J., Ritter, J. H., Steinbrueck, T., Holt, M. S., and Donis-Keller, H. Allelotyping of ductal carcinoma in situ of the breast: deletion of loci on 8p, 13q, 16q, 17p and 17q. Cancer Res, 55: 3399-3405, 1995.
29. Stack, M., Jones, D., White, G., Liscia, D. S., Venesio, T., Casey, G., Crichton, D., Varley, J., Mitchell, E., Heighway, J., and et al. Detailed mapping and loss of heterozygosity analysis suggests a suppressor locus involved in sporadic breast cancer within a distal region of chromosome band 17p13.3. Hum Mol Genet, 4: 2047-2055, 1995.
30. Phillips, N. J., Ziegler, M. R., Radford, D. M., Fair, K. L., Steinbrueck, T., Xynos, F. P., and Donis-Keller, H. Allelic deletion on chromosome 17p13.3 in early ovarian cancer. Cancer Res, 56: 606-611, 1996.
31. Schultz, D. C., Vanderveer, L., Berman, D. B., Hamilton, T. C., Wong, A. J., and Godwin, A. K. Identification of two candidate tumor suppressor genes on chromosome 17p13.3. Cancer Res, 56: 1997-2002, 1996.
32. Williamson, M. P., Elder, P. A., and Knowles, M. A. The spectrum of TP53 mutations in bladder carcinoma. Genes Chromosomes Cancer, 9: 108-118, 1994.
33. Park, S. Y., Kang, Y. S., Kim, B. G., Lee, S. H., Lee, E. D., Lee, K. H., Park, K. B., and Lee, J. H. Loss of heterozygosity on the short arm of chromosome 17 in uterine cervical carcinomas. Cancer Genet Cytogenet, 79: 74-78, 1995.
34. Konishi, H., Takahashi, T., Kozaki, K., Yatabe, Y., Mitsudomi, T., Fujii, Y., Sugiura, T., Matsuda, H., Takahashi, T., and Takahashi, T. Detailed deletion mapping suggests the involvement of a tumor suppressor gene at 17p13.3, distal to p53, in the pathogenesis of lung cancers. Oncogene, 17: 2095-2100, 1998.
35. Britschgi, C., Rizzi, M., Grob, T. J., Tschan, M. P., Hugli, B., Reddy, V. A., Andres, A. C., Torbett, B. E., Tobler, A., and Fey, M. F. Identification of the p53 family-responsive element in the promoter region of the tumor suppressor gene hypermethylated in cancer 1. Oncogene, 25: 2030-2039, 2006.
36. Langley, E., Pearson, M., Faretta, M., Bauer, U. M., Frye, R. A., Minucci, S., Pelicci, P. G., and Kouzarides, T. Human SIR2 deacetylates p53 and antagonizes PML/p53-induced cellular senescence. Embo J, 21: 2383-2396, 2002.
37. Vaziri, H., Dessain, S. K., Ng Eaton, E., Imai, S. I., Frye, R. A., Pandita, T. K., Guarente, L., and Weinberg, R. A. hSIR2(SIRT1) functions as an NAD-dependent p53 deacetylase. Cell, 107: 149-159, 2001.
38. Luo, J., Nikolaev, A. Y., Imai, S., Chen, D., Su, F., Shiloh, A., Guarente, L., and Gu, W. Negative control of p53 by Sir2alpha promotes cell survival under stress. Cell, 107: 137-148, 2001.
39. Smith, J. Human Sir2 and the 'silencing' of p53 activity. Trends Cell Biol, 12: 404-406, 2002.
40. Chen, W. Y., Wang, D. H., Yen, R. C., Luo, J., Gu, W., and Baylin, S. B. Tumor suppressor HIC1 directly regulates SIRT1 to modulate p53-dependent DNA-damage responses. Cell, 123: 437-448, 2005.
41. Vogelstein, B. and Kinzler, K. W. p53 function and dysfunction. Cell, 70: 523-526, 1992.
42. Cornelis, R. S., van Vliet, M., Vos, C. B., Cleton-Jansen, A. M., van de Vijver, M. J., Peterse, J. L., Khan, P. M., Borresen, A. L., Cornelisse, C. J., and Devilee, P. Evidence for a gene on 17p13.3, distal to TP53, as a target for allele loss in breast tumors without p53 mutations. Cancer Res, 54: 4200-4206, 1994.
43. Chen, W. Y., Zeng, X., Carter, M. G., Morrell, C. N., Chiu Yen, R. W., Esteller, M., Watkins, D. N., Herman, J. G., Mankowski, J. L., and Baylin, S. B. Heterozygous disruption of Hic1 predisposes mice to a gender-dependent spectrum of malignant tumors. Nat Genet, 33: 197-202, 2003.
44. Guerardel, C., Deltour, S., Pinte, S., Monte, D., Begue, A., Godwin, A. K., and Leprince, D. Identification in the human candidate tumor suppressor gene HIC-1 of a new major alternative TATA-less promoter positively regulated by p53. J Biol Chem, 276: 3078-3089, 2001.
45. Pinte, S., Guerardel, C., Deltour-Balerdi, S., Godwin, A. K., and Leprince, D. Identification of a second G-C-rich promoter conserved in the human, murine and rat tumor suppressor genes HIC1. Oncogene, 23: 4023-4031, 2004.
46. Ahmad, K. F., Engel, C. K., and Prive, G. G. Crystal structure of the BTB domain from PLZF. Proc Natl Acad Sci U S A, 95: 12123-12128, 1998.
47. Albagli, O., Dhordain, P., Deweindt, C., Lecocq, G., and Leprince, D. The BTB/POZ domain: a new protein-protein interaction motif common to DNA- and actin-binding proteins. Cell Growth Differ, 6: 1193-1198, 1995.
48. Deltour, S., Guerardel, C., and Leprince, D. Recruitment of SMRT/N-CoR-mSin3A-HDAC-repressing complexes is not a general mechanism for BTB/POZ transcriptional repressors: the case of HIC-1 and gammaFBP-B. Proc Natl Acad Sci U S A, 96: 14831-14836, 1999.
49. Deltour, S., Pinte, S., Guerardel, C., Wasylyk, B., and Leprince, D. The human candidate tumor suppressor gene HIC1 recruits CtBP through a degenerate GLDLSKK motif. Mol Cell Biol, 22: 4890-4901, 2002.
50. Turner, J. and Crossley, M. The CtBP family: enigmatic and enzymatic transcriptional co-repressors. Bioessays, 23: 683-690, 2001.
51. Levine, A. J. p53, the cellular gatekeeper for growth and division. Cell, 88: 323-331, 1997.
52. Prives, C. and Hall, P. A. The p53 pathway. J Pathol, 187: 112-126, 1999.
53. Vogelstein, B., Lane, D., and Levine, A. J. Surfing the p53 network. Nature, 408: 307-310, 2000.
54. Meek, D. W. Mechanisms of switching on p53: a role for covalent modification? Oncogene, 18: 7666-7675, 1999.
55. Gu, W. and Roeder, R. G. Activation of p53 sequence-specific DNA binding by acetylation of the p53 C-terminal domain. Cell, 90: 595-606, 1997.
56. Ryan, K. M., Phillips, A. C., and Vousden, K. H. Regulation and function of the p53 tumor suppressor protein. Curr Opin Cell Biol, 13: 332-337, 2001.
57. Gray, S. G. and Ekstrom, T. J. The human histone deacetylase family. Exp Cell Res, 262: 75-83, 2001.
58. Guarente, L. Sir2 links chromatin silencing, metabolism, and aging. Genes Dev, 14: 1021-1026, 2000.
59. Imai, S., Armstrong, C. M., Kaeberlein, M., and Guarente, L. Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase. Nature, 403: 795-800, 2000.
60. Landry, J., Sutton, A., Tafrov, S. T., Heller, R. C., Stebbins, J., Pillus, L., and Sternglanz, R. The silencing protein SIR2 and its homologs are NAD-dependent protein deacetylases. Proc Natl Acad Sci U S A, 97: 5807-5811, 2000.
61. Smith, J. S., Brachmann, C. B., Celic, I., Kenna, M. A., Muhammad, S., Starai, V. J., Avalos, J. L., Escalante-Semerena, J. C., Grubmeyer, C., Wolberger, C., and Boeke, J. D. A phylogenetically conserved NAD+-dependent protein deacetylase activity in the Sir2 protein family. Proc Natl Acad Sci U S A, 97: 6658-6663, 2000.
62. Frye, R. A. Phylogenetic classification of prokaryotic and eukaryotic Sir2-like proteins. Biochem Biophys Res Commun, 273: 793-798, 2000.
63. Motta, M. C., Divecha, N., Lemieux, M., Kamel, C., Chen, D., Gu, W., Bultsma, Y., McBurney, M., and Guarente, L. Mammalian SIRT1 represses forkhead transcription factors. Cell, 116: 551-563, 2004.
64. Fulco, M., Schiltz, R. L., Iezzi, S., King, M. T., Zhao, P., Kashiwaya, Y., Hoffman, E., Veech, R. L., and Sartorelli, V. Sir2 regulates skeletal muscle differentiation as a potential sensor of the redox state. Mol Cell, 12: 51-62, 2003.
65. Cohen, H. Y., Lavu, S., Bitterman, K. J., Hekking, B., Imahiyerobo, T. A., Miller, C., Frye, R., Ploegh, H., Kessler, B. M., and Sinclair, D. A. Acetylation of the C terminus of Ku70 by CBP and PCAF controls Bax-mediated apoptosis. Mol Cell, 13: 627-638, 2004.