簡易檢索 / 詳目顯示

研究生: 王崇軒
Wang, CHYNG HUSUAN
論文名稱: 研製一功率因數修正器與諧振轉換器
Development and Implementation of a Power Factor Corrector and Resonant Converter
指導教授: 陳美勇
Chen, Mei-Yung
白凱仁
Pai, Kai-Jun
口試委員: 陳美勇
CHEN, Mei-Yung
白凱仁
PAI, Kai-Jun
賴慶明
LAI, CHING-MING
口試日期: 2024/07/29
學位類別: 碩士
Master
系所名稱: 機電工程學系
Department of Mechatronic Engineering
論文出版年: 2024
畢業學年度: 113
語文別: 中文
論文頁數: 98
中文關鍵詞: 交流/直流轉換功率因數修正直流/直流轉換諧振式轉換
英文關鍵詞: AC/DC converter, power factor correction, DC/DC converter, resonant conversion
研究方法: 實驗設計法比較研究
DOI URL: http://doi.org/10.6345/NTNU202401938
論文種類: 學術論文
相關次數: 點閱:106下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究研製一應用於微移動載具充電器(Mirco-mobility charge)之交流/直流轉換器。第一級使用功率因數修正電路進行交流/直流轉換,第二級使用半橋LLC諧振式電路進行直流/直流轉換,藉此實現交流輸入電壓110 ~ 220 Vrms,直流輸出電壓60 V,輸出電流4 A的微移動充電器。
    本研究第一級電源需實現交流/直流轉換,採用升壓式功率因數修正電路使用意法半導體(ST)的控制晶片L4985A,將功率因數修正電路操作在連續導通模式。
    本研究第二級電源需實現直流/直流轉換,採用半橋LLC諧振式轉換電路,使用安森美(On-semi)的控制晶片NCP13992。其次,半橋功率開關,選用意法半導體的封裝在同一個晶片上閘極驅動器與高壓氮化鎵電晶體。
    本研究將第一級與第二級電路進行結合後,可將電路操作在交流輸入110 ~ 220 Vrms,皆能操作在滿載條件,並且在不同輸入條件下,功率因數皆可達到0.99,轉換效率可達到90%以上。

    This thesis developed the AC/DC and DC/DC converters applied in the micro-mobility charger. The AC/DC converter was the first stage, and it can achieve the power factor correction. The DC/DC converter was the second stage, and its power topology was the half-bridge LLC resonant conversion.
    The boost converter was used in the first stage, and its pulse-width modulation (PWM) controller was the L4985A (STMicroelectronics). In the second stage, the PWM controller was the NCP13992 (Onsemi), and the gallium nitride transistor was used as the half-bridge switches.
    In the developed micro-mobility charger, the AC input voltage was 110 to 220 Vrms, and the DC output voltage and current were 60 V and 4 A, respectively. The power conversion efficiency can be greater than 90%.

    謝誌 i 摘要 ii Abstract iii 目次 iv 表次 ix 圖次 x 第一章 緒論 1 1.1 引言 1 1.2 研究目的 1 1.3 研究方法 2 1.4 研究架構 4 第二章 功率因數修正電路 6 2.1 功率因數修正電路 6 2.2 導通模式分析 7 2.3 連續導通模式 7 2.4 連續導通模式導通時序分析 8 2.5 不連續導通模式 11 2.6 不連續導通模式導通時序分析 11 2.7 臨界導通模式 14 2. 8 臨界導通模式導通時序分析 15 第三章 半橋LLC諧振式轉換電路 18 3.1 半橋LLC諧振式轉換電路 18 3.2 硬性切換與柔性切換 19 3.3 半橋LLC諧振式轉換電路導通時序分析 20 3.3.1 時序t0 ~ t1區間電流路徑 23 3.3.2 時序t1 ~ t2區間電流路徑 23 3.3.3 時序t2 ~ t3區間電流路徑 24 3.3.4 時序t3 ~ t4區間電流路徑 25 3.3.5 時序t4 ~ t5區間電流路徑 25 3.3.6 時序t5 ~ t6區間電流路徑 26 3.4 諧振頻率 27 3.5 半橋LLC諧振式轉換電路等效分析 27 3.6 電壓增益曲線 29 第四章 功率因數修正電路設計 33 4.1 控制晶片介紹 33 4.2 功率因數修正電路系統架構與規格 35 4.3 功率元件設計 37 4.3.1 橋式整流器規格計算 37 4.3.2 升壓電感設計 38 4.3.3 輸入電容設計 39 4.3.4 輸出電容設計 39 4.3.5 功率開關設計 40 4.3.6 輸出二極體設計 41 4.4 周邊元件設計 42 4.4.1 輸出分壓電阻 42 4.4.2 電流偵測電阻 42 4.4.3 THD-CCM優化電阻 43 4.5 控制晶片回授補償電路設計 44 4.5.1 電壓漣波ΔVo_ripple設計 44 4.5.2 控制電壓VC設計 45 4.5.3 補償迴路增益H2f設計 45 4.5.4 補償電路零點頻率fz設計 45 4.5.5 輸出控制之直流增益GO設計 46 4.5.6 補償電路極點頻率fP設計 46 4.5.7 回授補償電容Cfp設計 46 4.5.8 回授補償電容Cfs設計 47 4.5.9 回授補償電阻Rfs設計 47 4.6 電路模擬 47 第五章 半橋LLC諧振式轉換電路設計 50 5.1 半橋LLC諧振式轉換電路控制晶片介紹 50 5.1.1 高壓啟動電流源與輸入電壓工作模式 52 5.1.2 過電壓與過溫保護 53 5.1.3 導通時間調變 55 5.1.4 半橋開關驅動 56 5.1.5 啟動程序 56 5.1.6 無負載模式 58 5.2 同步整流控制晶片介紹 59 5.2.1 同步整流功率開關導通與關閉 60 5.2.2 同步整流功率開關選擇建議 61 5.3 半橋LLC諧振式轉換電路系統架構與規格 62 5.4 諧振電路設計流程 63 5.4.1 電壓增益選擇 64 5.4.2 電壓增益曲線 66 5.4.3 變壓器匝數比 67 5.4.4 等效負載電阻設計 67 5.4.5 諧振電容設計 68 5.4.6 諧振電感設計 69 5.4.7 激磁電感設計 69 5.5 功率元件設計 69 5.5.1 一次側半橋功率開關 69 5.5.2 變壓器圈數設計 71 5.5.3 二次側同步整流功率開關 71 5.6 電路模擬 72 第六章 模擬與實驗結果 75 6.1 功率因數修正電路實驗結果 76 6.1.1 脈衝跳頻模式切換量測波形 76 6.1.2 滿載條件連續導通模式切換波形量測 77 6.1.3 滿載輸入與出電壓電流量測波形 78 6.2 半橋LLC諧振式轉換電路實驗結果 79 6.2.1 啟動程序量測波形 80 6.2.2 無負載模式量測波形 80 6.2.3 輕負載模式量測波形 81 6.2.4 跳開輕負載模式波形 81 6.2.5 滿載切換波形 82 6.2.6 滿載輸出量測波形 83 6.2.7 同步整流量測波形 85 6.3 轉換效率 86 第七章 結論與未來展望 91 7.1 結論 91 7.2 未來展望 92 參考文獻 94

    G. Gritti, "Novel adaptive pulse width modulator provides quasi-fixed switching frequency in constant on/off-time controlled regulators," in Proc. 2018 IEEE Applied Power Electronics Conference and Exposition (APEC), San Antonio, TX, USA, pp. 760-766, 2018.
    G. Gritti and C. Adragna, "Novel approach to current-mode control in DCM/CCM boundary boost PFC," in Proc. 2016 IEEE Applied Power Electronics Conference and Exposition (APEC), Long Beach, CA, USA, pp. 564-571, 2016.
    M. Bhardwaj, S. Y. Yu, Z. Ye, and S. Choudhury, "Improving light load power factor for GaN based totem pole bridgeless PFC using digital phase locked loop based vector cancellation and tracking error compensation," in Proc. 2018 IEEE Applied Power Electronics Conference and Exposition (APEC), San Antonio, TX, USA, pp. 771-776, 2018.
    W. H. Daniel, "Power electronics(Vol. 166.)," 2nd edition, New York, McGraw-Hill, 2011.
    J. L. Willems, J. A. Ghijselen, and A. E. Emanuel, "The apparent power concept and the IEEE standard 1459-2000," IEEE Trans. Power Delivery, vol. 20, no. 2, pp. 876-884, April 2005.
    T. Instruments, "Understanding boost power stages in switchmode power supplies". Texas Instruments, Mar. 1999. [Online] Available: https://www.ti.com/lit/an/slva061/slva061.pdf
    M. Liserre, F. Blaabjerg, and A. Dellaquila, "Step-by-step design proce-dure for a grid-connected three-phase PWM voltage source converter," In-ternational journal of electronics, pp. 445-460, 2004.
    H. S. Nair and N. Lakshminarasamma, "A computationally simple predic-tive CCM average current controller with nearly zero tracking error for boost PFC converter," IEEE Trans. Industry Applications, vol. 56, no. 5, pp. 5083-5094, Sept.-Oct. 2020.
    A. Gupta, A. Panwar, S. K. Sahoo, and I. J. Raglend, "A CCM/DCM hy-brid control scheme for single channel boost PFC converter to improve power quality," in Proc. 2019 Innovations in Power and Advanced Com-puting Technologies (i-PACT), Vellore, India, pp. 1-5, 2019.
    W. Y. Luo, Q. J. Wang, and S. Pengju, "Analysis and design of the DCM operation boost PFC converter with magnetic control," IET Power Elec-tronics, pp. 3697-3706, 2019. [Online] Available: https://ietresearch.onlinelibrary.wiley.com/doi/full/10.1049/iet-pel.2019.0437
    A. Dixit, K. Pande, S. Gangavarapu, and A. K. Rathore, "DCM-based bridgeless PFC converter for EV charging application," IEEE Journal of Emerging and Selected Topics in Industrial Electronics, vol. 1, no. 1, pp. 57-66, July 2020.
    B. C. Barry, J. G. Hayes, and M. S. Rylko, "CCM and DCM operation of the interleaved two-phase boost converter with discrete and coupled induc-tors," IEEE Trans. Power Electronics, vol. 30, no. 12, pp. 6551-6567, Dec. 2015.
    S. P. Yang, S. J. Chen, and C.M. Huang, "Small-signal modeling and con-troller design of BCM boost PFC converters," in Proc. 2012 7th IEEE Conference on Industrial Electronics and Applications (ICIEA), Singapore, pp. 1096-1101, 2012.
    N. B. Nam, N. A. Dung, Y. C. Liu, Y. C. Hsieh, H. J. Chiu, M. Hojo, and K. Yamanaka, "Design and implementation of digital controlled boost PFC converter under boundary conduction mode," in Proc. 2017 IEEE 3rd In-ternational Future Energy Electronics Conference and ECCE Asia (IFEEC 2017 - ECCE Asia), Kaohsiung, pp. 1114-1119, 2017.
    K. Pande, A. Dixit, S. Gangavarapu, A. K. Rathore, R. K. Singh, and S. K. Mishra, "Two-stage on-board charger using bridgeless PFC and half-bridge LLC resonant converter with synchronous rectification for 48V e-mobility," in Proc. 2020 IEEE Industry Applications Society Annual Meet-ing, Detroit, MI, USA, pp. 1-7, 2020.
    H. Kang, E. M. Findlay, and F. Udrea, "Mechanisms of asymmetrical turn-on and turn-off and the origin of dynamic CGD hysteresis for hard-switching superjunction MOSFETs," IEEE Trans. Electron Devices, vol. 67, no. 6, pp. 2478-2481, June 2020.
    S. Sathyan, H. M. Suryawanshi, B. Singh, C. Chakraborty, V. Verma, and M. S. Ballal, "ZVS–ZCS high voltage gain integrated boost converter for DC microgrid," IEEE Trans. Industrial Electronics, vol. 63, no. 11, pp. 6898-6908, Nov. 2016.
    Y. Wei, Q. Luo, Z. Wang, and H. A. Mantooth, "A complete step-by-step optimal design for LLC resonant converter," IEEE Trans. Power Electron-ics, vol. 36, no. 4, pp. 3674-3691, April 2021.
    M. Li, Z. Ouyang, and M. A. E. Andersen, "High-frequency LLC resonant converter with magnetic shunt integrated planar transformer," IEEE Trans. Power Electronics, vol. 34, no. 3, pp. 2405-2415, March 2019.
    S. Tian, F. C. Lee, and Q. Li, "Equivalent circuit modeling of LLC reso-nant converter," IEEE Trans. Power Electronics, vol. 35, no. 8, pp. 8833-8845, Aug. 2020.
    Y. Wei, Q. Luo, and A. Mantooth, "Overview of modulation strategies for LLC resonant converter," IEEE Trans. Power Electronics, vol. 35, no. 10, pp. 10423-10443, Oct. 2020.
    R. Maurya and R. Saha, "Design and simulation of an half-bridge LLC resonant converter for battery charger in EV," in Proc. 2022 IEEE Delhi Section Conference (DELCON), New Delhi, India, pp. 1-9, 2022.
    STMicroelectronics, "L4985. Datasheet. CCM PFC controller with high voltage startup," Jan. 2022. [Online] Available: https://www.st.com/resource/en/datasheet/l4985.pdf.
    STMicroelectronics, "Typical application based on L4986. How to design a CCM PFC pre-regulator based on L4985/L4986. AN5749," Sep. 2017. [Online] Available: https://www.st.com/resource/en/application_note/an5749-how-to-design-a-ccm-pfc-preregulator-based-on-l4985l4986-stmicroelectronics.pdf.
    Diodes Incorporated, "GBJ25005-GBJ2510. 25A glass passivated bridge rectifier," Sep. 2019. [Online] Available: https://www.mouser.tw/datasheet/2/115/ds21221-2940656.pdf.
    STMicroelectronics, "STF18N60M2 Datasheet. N-channel 600 V, 0.255 Ω typ., 13 A MDmesh M2 power MOSFET in a TO-220FP package," June. 2019. [Online] Available: https://www.mouser.tw/datasheet/2/389/stf18n60m2-1850644.pdf.
    STMicroelectronics, "STPSC8H065 Datasheet. 650 V, 8 A high surge sili-con carbide power schottky diode," Jan. 2020. [Online] Available: https://www.mouser.tw/datasheet/2/389/stpsc8h065-1851968.pdf.
    ON Semiconductor, "NCP13992 Datasheet. Current mode resonant con-troller with integrated high-voltage drivers, high performance," Feb. 2022. [Online] Available: https://www.mouser.tw/datasheet/2/308/1/NCP13992_D-2316792.pdf.
    Monolithic Power Systems, "MP6925A Datasheet. Fast turn-off, CCM/DCM compatible dual-LLC," Feb. 2020. [Online] Available: https://www.mouser.com/datasheet/2/277/MP6925AGS_Z-2946213.pdf
    Z. Shi, Y. Tang, Y. Guo, X. Li, and H. Sun, "Optimal design method of LLC half-bridge resonant converter considering backflow power analysis," IEEE Trans. Industrial Electronics, vol. 69, no. 4, pp. 3599-3608, April 2022.
    ON Semiconductor, "AN-4151 Datasheet. Half-bridge LLC resonant con-verter design using FSFR-series fairchild power switch (FPS™)," Oct. 2014. [Online] Available: https://www.onsemi.com/pub/Collateral/AN-4151.pdf.
    STMicroelectronics, "MASTERGAN4L Datasheet. 600 V half-bridge en-hancement mode GaN HEMT with high voltage driver," Dec. 2023. [Online] Available: https://www.st.com/resource/en/datasheet/mastergan4l.pdf.
    ON Semiconductor, "NTBLS4D0N15MC Datasheet. MOSFET single N-Channel 150 V, 4.4 mΩ, 187 A," Apr. 2020. [Online] Available: https://www.onsemi.com/pdf/datasheet/ntbls4d0n15mc-d.pdf

    無法下載圖示 本全文未授權公開
    QR CODE