研究生: |
王馨慧 Hsin-Hui Wang |
---|---|
論文名稱: |
Valproic acid 在多麩醯胺擴增細胞及動物模式之療效評估 Evaluation of therapeutic effect of valproic acid in polyglutamine-expanded cell and animal models |
指導教授: |
謝秀梅
Hsieh, Hsiu-Mei |
學位類別: |
碩士 Master |
系所名稱: |
生命科學系 Department of Life Science |
論文出版年: | 2007 |
畢業學年度: | 95 |
語文別: | 英文 |
論文頁數: | 47 |
中文關鍵詞: | 多麩醯胺擴增 、療效評估 |
英文關鍵詞: | Valproic acid, polyglutamine-expanded cell |
論文種類: | 學術論文 |
相關次數: | 點閱:162 下載:1 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
脊髓小腦萎縮症(Spinocerebellar ataxia)是一種體染色體顯性遺傳的神經退化疾病,各型脊髓小腦萎縮症在臨床病徵與基因表現程度上具有異質性,但主要病徵皆為小腦遭受損害。Valproic acid (VPA)為一臨床上沿用已久之抗癲癇藥物,具有穩定神經功能,近年來開始被應用在神經退化性疾病模式研究。2004年Sugai等人以腹腔注射方式在漸凍症 (Amyotrophic lateral sclerosis) 疾病模式小鼠做VPA投予,結果顯示VPA具有延緩疾病發生的年齡效果;2006年Tsai等人給予脊髓性肌肉萎縮症 (Spinal muscular atrophy) 模式小鼠VPA之後,原本退化的運動神經有復原的現象;另外經由細胞實驗也發現,VPA具有減緩多麩醯胺不正常擴增對細胞造成之毒性以及抑制細胞死亡。基於以上文獻報導,我們希望能了解VPA在同樣屬於多麩醯氨所引起的脊髓小腦萎縮症之不同型動物及細胞上是否也具有延緩細胞死亡以及降低多麩醯胺對細胞產生毒性的功效。以實驗室已經建立好具有明顯病徵以及小腦Purkinje細胞嚴重受損的SCA第十七型 (SCA17) 轉殖鼠進行為期13週0.26%重量百分濃度的VPA投予,結果顯示在滾輪測試行為表現上,VPA投予與否並沒有顯著改善小鼠運動能力;但是在組織免疫染色切片結果比較之下,VPA的投予明顯具有保護Purkinje細胞,延緩Purkinje細胞退化的功能。此外,我們以大鼠腎上腺嗜鉻細胞株建立SCA第三型 (SCA3) 誘導蛋白表現系統,利用昆蟲褪皮激素相似化合物(Ponasterone A)在細胞內誘導含有不同長度多麩醯胺片段的AT3蛋白,此系統成功建立之後可供未來VPA以及其他候選藥物之療效與機制探討使用。利用目前已建立之誘導性SCA3細胞模式以及SCA17轉殖小鼠模式,可更進一步探討VPA在脊髓小腦萎縮症的治療機制,並且提供已有藥物甚至是新開發藥物篩選的體外與體內平台。
Autosomal dominant spinocerebellar ataxias (SCAs) are a clinically and genetically heterogeneous group of neurodegenerative disorders primarily affecting the cerebellum. Valproic acid (VPA) has been reported as an effective molecule in neurodegenerative disease models such as amyotrophic lateral sclerosis (ALS) and spinal muscular atrophy (SMA) mouse models. In vitro studies have also shown that VPA can reduce polyglutamine (polyQ) toxicity and suppress neuron death. Considering these studies, it is possible to ameliorate symptoms of polyQ-mediated SCAs through VPA treatment. In this study, we use two systems to test this possibility. First, our SCA17 transgenic mice, whose ataxia phenotype and Purkinje cell lose have been confirmed, were treated with 0.26% w/v VPA for 13 weeks. No significant improvement in behavior was identified in these animals; however, immunohistochemical analysis shows that Purkinje cell morphology of VPA treated mice is better protected than those non-treated animals. In addition, SCA3 ecdysone regulatory inducible system in PC12 cells have been established and will be used to test VPA effectiveness in vitro. With both SCA17 in vivo and SCA3 in vitro systems, we should be able to evaluate whether VPA can ameliorate the polyQ toxicity in a common mechanism. Results obtained from this study should provide more information for therapeutic strategy designing in the future clinical application and reveal more implication about the molecular mechanisms of polyQ-mediated neurodegenerative diseases.
Reference
Cemal CK, Carroll CJ, Lawrence L, Lowrie MB, Ruddle P, Al-Mahdawi S, King RH, Pook MA, Huxley C, Chamberlain S (2002) YAC transgenic mice carrying pathological alleles of the MJD1 locus exhibit a mild and slowly progressive cerebellar deficit. Hum Mol Genet 11:1075-1094.
Colomer Gould VF (2005) Mouse models of Machado-Joseph disease and other polyglutamine spinocerebellar ataxias. NeuroRx 2:480-483.
Cui SS, Yang CP, Bowen RC, Bai O, Li XM, Jiang W, Zhang X (2003) Valproic acid enhances axonal regeneration and recovery of motor function after sciatic nerve axotomy in adult rats. Brain Res 975:229-236.
Duennwald ML, Jagadish S, Muchowski PJ, Lindquist S (2006a) Flanking sequences profoundly alter polyglutamine toxicity in yeast. Proc Natl Acad Sci U S A 103:11045-11050.
Duennwald ML, Jagadish S, Giorgini F, Muchowski PJ, Lindquist S (2006b) A network of protein interactions determines polyglutamine toxicity. Proc Natl Acad Sci U S A 103:11051-11056.
Evert BO, Wullner U, Schulz JB, Weller M, Groscurth P, Trottier Y, Brice A, Klockgether T (1999) High level expression of expanded full-length ataxin-3 in vitro causes cell death and formation of intranuclear inclusions in neuronal cells. Hum Mol Genet 8:1169-1176.
Gibbs JP, Adeyeye MC, Yang Z, Shen DD (2004) Valproic acid uptake by bovine brain microvessel endothelial cells: role of active efflux transport. Epilepsy Res 58:53-66.
Goswami J, Martin LA, Goldowitz D, Beitz AJ, Feddersen RM (2005) Enhanced Purkinje cell survival but compromised cerebellar function in targeted anti-apoptotic protein transgenic mice. Mol Cell Neurosci 29:202-221.
Greene LA, Tischler AS (1976) Establishment of a noradrenergic clonal line of rat adrenal pheochromocytoma cells which respond to nerve growth factor. Proc Natl Acad Sci U S A 73:2424-2428.
Haacke A, Broadley SA, Boteva R, Tzvetkov N, Hartl FU, Breuer P (2006) Proteolytic cleavage of polyglutamine-expanded ataxin-3 is critical for aggregation and sequestration of non-expanded ataxin-3. Hum Mol Genet 15:555-568.
Henry TR (2003) The history of valproate in clinical neuroscience. Psychopharmacol Bull 37 Suppl 2:5-16.
Hughes RE, Olson JM (2001) Therapeutic opportunities in polyglutamine disease. Nat Med 7:419-423.
Ikeda H, Yamaguchi M, Sugai S, Aze Y, Narumiya S, Kakizuka A (1996) Expanded polyglutamine in the Machado-Joseph disease protein induces cell death in vitro and in vivo. Nat Genet 13:196-202.
Jeong MR, Hashimoto R, Senatorov VV, Fujimaki K, Ren M, Lee MS, Chuang DM (2003) Valproic acid, a mood stabilizer and anticonvulsant, protects rat cerebral cortical neurons from spontaneous cell death: a role of histone deacetylase inhibition. FEBS Lett 542:74-78.
Johnston JA, Ward CL, Kopito RR (1998) Aggresomes: a cellular response to misfolded proteins. J Cell Biol 143:1883-1898.
Kanai H, Sawa A, Chen RW, Leeds P, Chuang DM (2004) Valproic acid inhibits histone deacetylase activity and suppresses excitotoxicity-induced GAPDH nuclear accumulation and apoptotic death in neurons. Pharmacogenomics J 4:336-344.
Kostrouchova M, Kostrouch Z, Kostrouchova M (2007) Valproic acid, a molecular lead to multiple regulatory pathways. Folia Biol (Praha) 53:37-49.
Kuhlbrodt K, Mouysset J, Hoppe T (2005) Orchestra for assembly and fate of polyubiquitin chains. Essays Biochem 41:1-14.
Lasek K, Lencer R, Gaser C, Hagenah J, Walter U, Wolters A, Kock N, Steinlechner S, Nagel M, Zuhlke C, Nitschke MF, Brockmann K, Klein C, Rolfs A, Binkofski F (2006) Morphological basis for the spectrum of clinical deficits in spinocerebellar ataxia 17 (SCA17). Brain 129:2341-2352.
Linnemann C, Schmeh I, Thier P, Schwarz C (2006) Transient change in GABA(A) receptor subunit mRNA expression in Lurcher cerebellar nuclei during Purkinje cell degeneration. BMC Neurosci 7:59.
Manto MU (2005) The wide spectrum of spinocerebellar ataxias (SCAs). Cerebellum 4:2-6.
Margolis RL (2002) The spinocerebellar ataxias: order emerges from chaos. Curr Neurol Neurosci Rep 2:447-456.
Nakamura K, Jeong SY, Uchihara T, Anno M, Nagashima K, Nagashima T, Ikeda S, Tsuji S, Kanazawa I (2001) SCA17, a novel autosomal dominant cerebellar ataxia caused by an expanded polyglutamine in TATA-binding protein. Hum Mol Genet 10:1441-1448.
Patel S, Hillard CJ (2001) Cannabinoid CB(1) receptor agonists produce cerebellar dysfunction in mice. J Pharmacol Exp Ther 297:629-637.
Paulson HL, Das SS, Crino PB, Perez MK, Patel SC, Gotsdiner D, Fischbeck KH, Pittman RN (1997a) Machado-Joseph disease gene product is a cytoplasmic protein widely expressed in brain. Ann Neurol 41:453-462.
Paulson HL, Perez MK, Trottier Y, Trojanowski JQ, Subramony SH, Das SS, Vig P, Mandel JL, Fischbeck KH, Pittman RN (1997b) Intranuclear inclusions of expanded polyglutamine protein in spinocerebellar ataxia type 3. Neuron 19:333-344.
Perez MK, Paulson HL, Pendse SJ, Saionz SJ, Bonini NM, Pittman RN (1998) Recruitment and the role of nuclear localization in polyglutamine-mediated aggregation. J Cell Biol 143:1457-1470.
Reid SJ, Rees MI, van Roon-Mom WM, Jones AL, MacDonald ME, Sutherland G, During MJ, Faull RL, Owen MJ, Dragunow M, Snell RG (2003) Molecular investigation of TBP allele length: a SCA17 cellular model and population study. Neurobiol Dis 13:37-45.
Sagot Y, Dubois-Dauphin M, Tan SA, de Bilbao F, Aebischer P, Martinou JC, Kato AC (1995) Bcl-2 overexpression prevents motoneuron cell body loss but not axonal degeneration in a mouse model of a neurodegenerative disease. J Neurosci 15:7727-7733.
Schmidt T, Landwehrmeyer GB, Schmitt I, Trottier Y, Auburger G, Laccone F, Klockgether T, Volpel M, Epplen JT, Schols L, Riess O (1998) An isoform of ataxin-3 accumulates in the nucleus of neuronal cells in affected brain regions of SCA3 patients. Brain Pathol 8:669-679.
Schols L, Bauer P, Schmidt T, Schulte T, Riess O (2004) Autosomal dominant cerebellar ataxias: clinical features, genetics, and pathogenesis. Lancet Neurol 3:291-304.
Seipel K, Georgiev O, Gerber HP, Schaffner W (1993) C-terminal domain (CTD) of RNA-polymerase II and N-terminal segment of the human TATA binding protein (TBP) can mediate remote and proximal transcriptional activation, respectively. Nucleic Acids Res 21:5609-5615.
Sinn DI, Kim SJ, Chu K, Jung KH, Lee ST, Song EC, Kim JM, Park DK, Kun Lee S, Kim M, Roh JK (2007) Valproic acid-mediated neuroprotection in intracerebral hemorrhage via histone deacetylase inhibition and transcriptional activation. Neurobiol Dis 26:464-472.
Sugai F, Yamamoto Y, Miyaguchi K, Zhou Z, Sumi H, Hamasaki T, Goto M, Sakoda S (2004) Benefit of valproic acid in suppressing disease progression of ALS model mice. Eur J Neurosci 20:3179-3183.
Takiyama Y, Oyanagi S, Kawashima S, Sakamoto H, Saito K, Yoshida M, Tsuji S, Mizuno Y, Nishizawa M (1994) A clinical and pathologic study of a large Japanese family with Machado-Joseph disease tightly linked to the DNA markers on chromosome 14q. Neurology 44:1302-1308.
Tarlac V, Storey E (2003) Role of proteolysis in polyglutamine disorders. J Neurosci Res 74:406-416.
Trottier Y, Lutz Y, Stevanin G, Imbert G, Devys D, Cancel G, Saudou F, Weber C, David G, Tora L, et al. (1995) Polyglutamine expansion as a pathological epitope in Huntington's disease and four dominant cerebellar ataxias. Nature 378:403-406.
Tsai LK, Tsai MS, Lin TB, Hwu WL, Li H (2006) Establishing a standardized therapeutic testing protocol for spinal muscular atrophy. Neurobiol Dis 24:286-295.
van Bergeijk J, Haastert K, Grothe C, Claus P (2006) Valproic acid promotes neurite outgrowth in PC12 cells independent from regulation of the survival of motoneuron protein. Chem Biol Drug Des 67:244-247.
Vernon PS, Griffin DE (2005) Characterization of an in vitro model of alphavirus infection of immature and mature neurons. J Virol 79:3438-3447.
Waelter S, Boeddrich A, Lurz R, Scherzinger E, Lueder G, Lehrach H, Wanker EE (2001) Accumulation of mutant huntingtin fragments in aggresome-like inclusion bodies as a result of insufficient protein degradation. Mol Biol Cell 12:1393-1407.
Wang Q, Li L, Ye Y (2006) Regulation of retrotranslocation by p97-associated deubiquitinating enzyme ataxin-3. J Cell Biol 174:963-971.
Zoghbi HY, Orr HT (2000) Glutamine repeats and neurodegeneration. Annu Rev Neurosci 23:217-247.