研究生: |
林和儒 Lin, He-Ru |
---|---|
論文名稱: |
模糊樹突狀神經元模型控制應用於下肢復健機器人系統 Lower Limb Exoskeleton Rehabilitation System Using Fuzzy Dendritic Neuron Model Control |
指導教授: |
陳瑄易
Chen, Syuan-Yi 蔣欣翰 Chiang, Hsin-Han |
學位類別: |
碩士 Master |
系所名稱: |
電機工程學系 Department of Electrical Engineering |
論文出版年: | 2020 |
畢業學年度: | 108 |
語文別: | 中文 |
論文頁數: | 119 |
中文關鍵詞: | 單桿氣壓缸 、開關閥 、比例積分微分(PID)控制器 、模糊類神經網路(FNN) 、模糊樹突狀神經元模型(Fuzzy-DNM) |
英文關鍵詞: | pneumatic cylinder, solenoid valve, Proportional-integral-derivative (PID) controller, Dendritic Neuron Model (DNM), Dendritic Neuron Model (Fuzzy-DNM) controller, Proportional-integral-derivative controller |
DOI URL: | http://doi.org/10.6345/NTNU202001365 |
論文種類: | 學術論文 |
相關次數: | 點閱:202 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
[1] A. D. Delgado, M. X. Escalon, A. J. Kozlowski, W. Weinrauch, S. J. Suarez, T. N. Bryce, J. M. Wecht, C. Y. Tsai, and A. M. Spungen, “Safety of exoskeleton-assisted walking in SCI inpatient rehabilitation,” 2017 International Symposium on Wearable Robotics and Rehabilitation(WeRob), pp. 1-2, June 2018.
[2] T. Tamura, M. Sekine, T. Shinchi, T. Yuji, Y. Higashi, and T. Fujimoto, “PC-based rehabilitation tool for the elderly,” 2007 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 1808-1809, Oct. 2007
[3] 101傳媒,https://www.101newsmedia.com/m/news/31305
[4] 自由時報,https://health.ltn.com.tw/article/thesis/1172301
[5] 台灣時報:「脛骨粉碎性」骨折,宏仁醫院復健治癒,http://www.taiwantimes.com.tw/ncon.php?num=27498page=ncon.php
[6] B. Hu, H. Yu and Y. Chang, “Design of Mechanism and Control System for a Lightweight Lower Limb Exoskeleton,” 2018 3rd International Conference on Control, Robotics and Cybernetics (CRC), pp. 83-87, Sept. 2018.
[7] H. Kweon and Y. Kim, “Tailor-Made Lower Limb Rehabilitation Platform,” 2017 International Symposium on Computer Science and Intelligent Controls (ISCSIC), pp. 92-94, Feb. 2018.
[8] A. Wang, N. Hu, J. Yu, W. Liao, J. Zhang, X. Wu and C. Pei, “Research on robot control system of lower limb rehabilitation robot based on human gait comfort,” 2019 International Conference on Advanced Mechatronics Systems (ICAMechS), pp. 34-39, Aug. 2019.
[9] ReWalk, https://rewalk.com/
[10] CYBERDYNE, https://www.cyberdyne.jp/english/
[11] L. Zimmerli, A. Duschau-Wicke, A. Mayr, R. Riener and L. Lunenburger, “Virtual reality and gait rehabilitation Augmented feedback for the Lokomat,” 2009 Virtual Rehabilitation International Conference, pp. 150-153, July 2009.
[12] Z. Yang, B. Zi and B. Chen, “Mechanism Design and Kinematic Analysis of a Waist and Lower Limbs Cable-Driven Parallel Rehabilitation Robot,” 2019 IEEE 3rd Advanced Information Management, Communicates, Electronic and Automation Control Conference (IMCEC), pp. 723-727, Oct. 2019.
[13] Y. Zou, K. Liu, N. Wang, J. Li, X. Geng and K. Chang, “Design and Optimization of Movable Cable-Driven Lower-Limb Rehabilitation Robot,” 2018 3rd International Conference on Advanced Robotics and Mechatronics (ICARM), pp. 714-719, July 2018.
[14] Y. Zou, N. Wang, X. Wang, H. Ma and K. Liu, “Design and Experimental Research of Movable Cable-Driven Lower Limb Rehabilitation Robot,” IEEE Access, vol. 7, pp. 2315-2326, Dec. 2018.
[15] M. Chandrapal, X. Chen and W. Wang, “Self Organizing fuzzy control of pneumatic artificial muscle for active orthotic device,” 2010 IEEE International Conference on Automation Science and Engineering, pp. 632-637, Aug. 2010.
[16] H. Aguilar-Sierra, R. Lopez, W. Yu, S. Salazar and R. Lozano, “A lower limb exoskeleton with hybrid actuation,” 5th IEEE RAS/EMBS International Conference on Biomedical Robotics and Biomechatronics, pp. 695-700, Aug. 2014.
[17] Z. Lu, J. Huo, Y. Wan, T. Xin, and Z. Xie, “Design and simulation analysis of a lower limbs exoskeleton powered by hydraulic drive,’’ 2017 2nd International Conference on Advanced Robotics and Mechatronics (ICARM), pp. 173-177, Aug. 2017.
[18] S. Wan, M. Yang, R. Xi, X. Wang, R. Qian and Q. Wu, “Design and control strategy of humanoid lower limb exoskeleton driven by pneumatic artificial muscles,” 2016 23rd International Conference on Mechatronics and Machine Vision in Practice (M2VIP), pp. 1-5, Nov. 2016.
[19] N. Koceska, S. Koceski, P. B. Zobel and F. Durante, “Control architecture for a lower limbs rehabilitation robot system,” 2008 IEEE International Conference on Robotics and Biomimetics, pp. 971-976, Feb. 2009.
[20] R. Goergen, A. C. Valdiero, L. A. Rasia, M. Oberdorfer, J. P. de Souza and R. S. Goncalves, “Development of a Pneumatic Exoskeleton Robot for Lower Limb Rehabilitation,” 2019 IEEE 16th International Conference on Rehabilitation Robotics (ICORR), pp. 187-192, June 2019.
[21] H. M. Chen, Y. P. Shyu, and C. H. Chen, “Design and realization of a sliding mode control scheme for a pneumatic cylinder X-Y axles position servo system,” IET International Conference on Frontier Computing. Theory, Technologies and Applications, pp. 416-421, Aug. 2010.
[22] D. Villanueva, J. C. Perez-Moreno, V. Maldonado, and C. L. Gomez, “Technology Applied to Pediatric Rehabilitation,” 2009 Pan American Health Care Exchanges, pp. 53-56, July 2009.
[23] F. Qin, H. Zhao and S. Zhen, “Application of the Udwadia-Kalaba approach to tracking control of lower limb rehabilitation robot,” 2019 IEEE 4th International Conference on Advanced Robotics and Mechatronics (ICARM), vol. 50, no. 12, pp. 298-302, July 2019.
[24] F. J. Lin, S. Y. Chen, L. T. Teng and H. Chu, “Recurrent Functional-Link-Based Fuzzy Neural Network Controller With Improved Particle Swarm Optimization for a Linear Synchronous Motor Drive,” IEEE Transactions on Magnetics, vol. 45, no. 8, pp. 3151-3165, Aug. 2009.
[25] F. J. Lin, R. J. Wai, C. C. Lee, “Fuzzy neural network position controller for ultrasonic motor drive using push-pull DC-DC converter,” IEE Proceedings – Control Theory and Applications, vol. 146, no. 1, pp. 99-107, Jan. 1999.
[26] S. Gao, M. Zhou, Y. Wang, J. Cheng, H. Yachi and J. Wang, “Dendritic Neuron Model With Effective Learning Algorithms for Classification, Approximation, and Prediction,” IEEE Transactions on Neural Networks and Learning Systems, vol. 30, no. 2, pp. 601-614, Feb. 2019.
[27] Y. Yu, S. Song, T. Zhou, H. Yachi and S. Gao, “Forecasting house price index of China using dendritic neuron network,” 2016 International Conference on Progress in informatics and Computing (PIC), pp. 37-41, Dec. 2016.
[28] K. Zhao, T. Zhang, X. Lai, C. Dou and D. Yue, “A dendritic neuron based very short-term prediction model for photovoltaic power,” 2018 Chinese Control And Decision Conference (CCDC), pp. 1106-1110, Jun. 2019.
[29] D. Jia, S. Zheng, L. Yang, Y. Todo and S. Gao, “A Dendritic Neuron Model with Nonlinearity Validation on Istanbul Stock and Taiwan Futures Exchange Indexes Prediction,” 2018 5th IEEE International Conference on Cloud Computing and Intelligence Systems (CCIS), pp. 242-246, Nov. 2018.
[30] F. Teng and Y. Todo, “Dendritic Neuron Model and Its Capability of Approximation,” 2019 6th International Conference on Systems and Informatics (ICSAI), pp. 542-546, Nov. 2019.
[31] SWAN,http://www.swanair.com.tw/chinese/01_products/03_features.aspx?fid=13&pid=28
[32] 氣壓三點組合原理,https://beeway.pixnet.net/blog/post/25128031
[33] 氣立三點組合,http://www.chelic.com/website/tw/products-MOin-1.html
[34] N. Glebov, T. Kruglova and M. Shoshiashvili, “Intelligent Electro-pneumatic Module for Industrial Robots,” 2019 International Multi-Conference on Industrial Engineering and Modern Technologies (FarEastCon), pp. 01-04, Oct. 2019.
[35] X. Zan and T. Wang, “A Pneumatic Force Actuator System with long tubes based on the Model-Free Adaptive Control with a Tracking Differentiator,” 2015 8th International Congress on Image and Signal Processing (CISP), pp. 1131-1136, Oct. 2015.
[36] H. Kawanaka and K. Hanada, “Many points positioning control of a pneumatic cylinder for a vertical axis actuator using two degrees of freedom PI control method,” Proceedings of 4th IEEE International Workshop on Advanced Motion Control – AMC ’96 - Mie, vol. 1, pp. 71-74, March 1996.
[37] 氣立電磁閥,http://www.chelic.com/website/tw/products-SOin-2.html
[38] T. Morichika, F. Kikikawa, O. Oyama and T. Yoshimitsu, “Development of walking assist equipment with pneumatic cylinder,” SICE Annual Conference 2007, pp. 1058-1063, Sept. 2007.
[39] A. T. Din, R. A. Rahimi and M. A. Kadir, “A numerical analysis on double acting pneumatic telescopic cylinder motion characteristics,” 2010 2nd International Conference on Computer Engineering and Technology, pp. V5-71-V5-74, April 2010.
[40] L. Zhao, Y. Yang, Y. Xia and Z. Liu, “Active Disturbance Rejection Position Control for a Magnetic Rodless Pneumatic Cylinder,” in IEEE Transaction on Industrial Electronics, vol. 62, no. 9, pp. 5838-5846, Sept. 2015.
[41] 不鏽鋼氣缸,http://www.chelic.com/website/tw/products-CYin05-3.html
[42] 相對式旋轉編碼器,https://zh.wikipedia.org/wiki/%E6%97%8B%E8%BD%89%E7%B7%A8%E7%A2%BC%E5%99%A8
[43] 瑞士宜科,http://www.elco-holding.com.cn/download/?catId=232
[44] NI myRIO 入門指南,http://pmoa4f1ea.pic30.websiteonline.cn/upload/7it5.pdf
[45] NI myRIO 軟體架構圖,http://mortishuang.blogspot.com/2014/12/myrio1.html
[46] NI myRIO-1900, http://www.ni.com/pdf/manuals/376047c.pdf
[47] 星協系統科技,http://www.wpc.com.tw/2597620301.html
[48] 氣立腳踏閥,http://www.chelic.com/website/tw/products-SOin-7.html
[49] D. I. Stoia and M. Toth-Tascau, “Influence of treadmill velocity on joint angles of lower limbs during human gait,” 2011 E-Health and Bioengineering Conference (EHB), pp. 1-4, Nov. 2011.
[50] S. Bhaumik, S. Ansari and R. Chattaraj, “Motion for lower limb Exoskeleton based on predefined gait data,” 2016 International Conference on Intelligent Control Power and Instrumentation (ICICPI), pp. 292-296, Oct. 2016.
[51] Y. Wang, A. Zhu, H. Wu, X. Zhang and G. Cao, “Control of Lower Limb Rehabilitation Exoskeleton Robot Based on CPG Neural Network,” 2019 16th International Conference on Ubiquitous Robots (UR), pp, 678-682, June 2019.
[52] X. Wu, D. Liu, M. Liu, C. Chen and H. Guo, “Individualized Gait Pattern Generation for Sharing Lower Limb Exoskeleton Robot,” IEEE Transactions on Automation Science and Engineering , vol. 15, no. 4, pp. 1459-1470, Oct. 2018.
[53] X. Zhang, X. Kong, G. Liu and Y. Wang, “Research on the walking gait coordinations of the lower limb rehabilitation robot,” 2010 IEEE International Conference on Robotics and Biomimetics, pp. 1233-1237, Dec. 2010.
[54] S. Han, H. Zhang, X. Wang, L. Xu and N. Zheng, “A rehabilitation gait training system for half lower limb disorder,” 2017 Chinese Automation Congress (CAC), pp. 3841-3847, Oct. 2017.
[55] X. Wang, X. Cao, H. Song, T. Lu, and K. Yuan, “A gait trajectory measuring and planning method for lower limb robotic rehabilitation,” 2015 IEEE International Conference on Mechatronics and Automation (ICMA), pp. 1489-1494, Aug. 2015.
[56] Y. Cao, J. Huang and C. Xiong, “Single-layer Learning Based Predictive Control with Echo State Network for Pneumatic Muscle Actuators-driven Exoskeleton,” in IEEE Transactions on Cognitive and Developmental Systems, pp. 1-1, Jan. 2020.
[57] V. C. Moulianitis, V. N. Syrimpeis, N. A. Aspragathos and E. C. Panagiotopoulos, “A closed-loop drop-foot correction system with gait event detection from the contralateral lower limb using fuzzy logic,” 2011 10th International Workshop on Biomedical Engineering, pp. 1-4, Oct. 2011.
[58] 年輕人與老人步態特徵,https://blog.xuite.net/wdt5861/twblog/130104743-%E5%B9%B4%E8%BC%95%E4%BA%BA%E8%88%87%E8%80%81%E4%BA%BA%E7%9A%84%E6%AD%A5%E6%85%8B%E7%89%B9%E5%BE%B5
[59] 步態週期,https://vocus.cc/physio-imurmur/5cc674a9fd89780001e3fd6a
[60] 陳瑞鵬,氣動式下肢外骨骼步態訓練系統設計與控制,碩士論文,龍華科技大學,2017。
[61] 晉茂林,機器人學,台北 : 五南圖書出版有限公司(2000)。
[62] 許銘全,陳建銘,劉芳志,氣動式手臂之設計及氣壓缸動態模型推導,期刊論文,修平科技大學,2011。
[63] S. K. Sahoo, A. Ramulu, S. Batta and S. Duggal, “Performance analysis and simulation of three phase voltage source inverter using basic PWM techniques,” IET Chennai 3rd International on Sustainable Energy and Intelligent Systems (SEISCON 2012), pp. 1-7, Dec. 2012.
[64] S. Y. Chen, and F. J. Lin, “Robust nonsingular terminal sliding-mode control for nonlinear magnetic bearing system,” IEEE Trans. Control Systems Technology, vol. 19, no. 3, pp. 636-643, May 2011.
[65] F. J. Lin, R. J. Wai, K. K. Shyu and T. M. Liu, “Recurrent fuzzy neural network control for piezoelectric ceramic linear ultrasonic motor drive,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 48, no. 4, pp. 900-913, July 2001.