研究生: |
曾鈺庭 Tseng, Yu-Ting |
---|---|
論文名稱: |
車載網路中儲存攜帶轉送訊息傳遞延遲之穩態分析 Steady state analysis of delivery delay of store-carry-forward messages in VANETs |
指導教授: |
黃政吉
Huang, Jeng-Ji |
學位類別: |
碩士 Master |
系所名稱: |
電機工程學系 Department of Electrical Engineering |
論文出版年: | 2016 |
畢業學年度: | 104 |
語文別: | 中文 |
論文頁數: | 61 |
中文關鍵詞: | 車載網路 、儲存攜帶轉送 、穩態機率 |
英文關鍵詞: | vehicluar ad hoc networks (VANETs), store-carry-forward, steady state probability |
DOI URL: | https://doi.org/10.6345/NTNU202203669 |
論文種類: | 學術論文 |
相關次數: | 點閱:140 下載:13 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在車載網路(Vehicular Ad Hoc Networks, VANETs)中,當道路上發生意外時距離最近的車輛會傳送緊急訊息給後方車輛,由於稀疏的交通量或是很低的無線裝置市場滲透率會發生很多的網路斷開現象,當發生網路斷開的現象時可利用對向車輛使用儲存攜帶轉送(store-carry-forward)來修復,而使用儲存攜帶轉送來修復網路斷開則需花費延遲時間。
在本論文會利用嵌入的馬可夫鍊(Embedded Markov Chain, EMC)分析前一次網路斷開的狀態對此次網路斷開的影響,並且分為三種類型去做討論,以及計算出使用儲存攜帶轉送傳遞訊息的穩態機率以及延遲時間的平均值與變異數,而數值分析的結果呈現出我們的分析是高度準確的。
In vehicular ad hoc networks (VANETs), when accident occurs, the vehicles which is the nearest of incident place, sends an emergency message to rear vehicle. There may occur network disconnections because of low penetration of wireless devices or light vehicle traffic. When a network disconnection occurs, a store-carry-forward message delivery can be carried out by vehicles in the reverse direction to help restore the network connection, and it may have some delay time. In this paper, we use the Embedded Markov Chain (EMC) to analysis the previous network disconnection that have impact on the actual network disconnection. And the state will divide into three type to analysis. The steady state probability of a store-carry-forward message delivery, the mean of delay and the variance of delay are investigated. Numerical results show that our analysis is highly accurate.
[1] N. Wisitpongphan, F. Bai, P. Mudalige, V. Sadekar and O. K. Tonguz, “Routing in sparse vehicluar ad hoc wireless networks,” IEEE J. Sel. Areas Commun., vol. 25, no. 8, pp. 1538-1556, Oct. 2007.
[2] Y. Zhuang, J. Pan, Y. Luo and L. Cai, “Time and location-critical emergency message dissemination for vehicular ad-hoc networks,” IEEE J. Sel. Areas Commun., vol. 29, vol. 1, pp. 187-196, Jan. 2011.
[3] J.-J. Huang, “Accurate probability distribution of rehealing delay in sparse VANETs,” IEEE Commun. Lett., vol. 19, no. 7, 1193-1196, Jul. 2015.
[4] W.-L. Jin andW.W. Recker, “An analytical model of multihop connectivity of inter-vehicle communication systems,” IEEE Trans. Wireless Commun., vol. 9, no. 1, pp. 106–112, Jan. 2010.
[5] T. Kimura, T. Jonouchi, T. Matsuda, T. Takine, “Density-aware store-carry-forward routing with adaptive forwarding probability control,” IEEE International Conference, 2015, pp.474-475.
[6] J. L. Huang, L. Y. Yeh, and H. Y. Chien, “ABAKA: An anonymous batch authenticated and key agreement scheme for value-added services in vehicular ad hoc networks,” IEEE Trans. Veh. Technol., vol. 60, no. 1, pp. 248–262, Jan. 2011.
[7] D. Jiang and L. Delgrossi, “IEEE 802.11p: Towards an international standard for wireless access in vehicular environments,” IEEE VTC’08 Spring, 2008, pp.2036-2040.
[8] M. Khabazian and M. K. Mehmet-Ali, “A performance modeling of connectivity in vehicular ad hoc networks,” IEEE Trans. Veh. Technol., vol. 57, no. 4, pp. 2440–2450, Jul. 2008.
[9] S.-I. Sou and O. K. Tonguz, “Enhancing VANET connectivity through roadside units on highways,” IEEE Trans. Veh. Technol., vol. 60, no. 8, pp. 3586–3602, Oct. 2011.
[10] D. B. Johnson and D. A. Maltz, “Dynamic source routing in ad hoc wireless networks,” in Mobile Computing, T. Imielinski and H. Korth, Eds. Kluwer, 1996, pp. 153–181.
[11] X. Hong, T. Kwon, M. Gerla, D. Gu, and G. Pei, “A mobility framework for ad hoc wireless networks,” in ACM 2nd Int’l Conf. on Mobile Data Management (MDM), January 2001.
[12] D. Miorandi and E. Altman, “Connectivity in one dimensional ad hoc networks: a queuing theoretic approach,” ACM/Springer Wireless hoc networks: a queuing theoretic approach,” ACM/Springer Wireless.
[13] M. Rickert, K. Nagel, M. Schreckenberg, and A. Latour, “Two lane traffic simulations using cellular automatas,” Physica A, vol. 231, no. 4, pp. 534–550, 1996.
[14] A. Vahdat and D. Becker, “Epidemic routing for partially connected ad hoc networks,” Duke University, Tech. Rep., April 2000, cS-200006.
[15] L. Briesemeister and G. Hommel, “Role-based multicast in highly mobile but sparsely connected ad hoc networks,” in Proc. ACM Int. Symp. on Mobile Ad Hoc Network. and Comput. (MOBIHOC), Boston, USA, August 2000, pp. 45–50.
[16] M. Abuelela and S. Olariu, “SODA: a smart opportunistic data dissemination approach for VANET,” in Proc. of the International Workshop on Intelligent Transportation, 2009
[17] M. Desai and D. Manjunath, “On the connectivity in finite ad hoc networks,” IEEE Commun. Lett., 6(10):437–439, 2002.
[18] M.M. Artimy, W.J. Phillips, and W. Robertson, “Assignment of dynamic transmission range based on estimation of vehicle density,” in Proc. ACM Int’l Workshop on VehiculAr InterNETworking (VANET’05), 2005.
[19] M. Kafsi, P. Papadimitratos, O. Dousse, T. Alpcan, and J.-P. Hubaux, “VANET Connectivity Analysis,” in Workshop on Automotive Networking and Applications (Autonet), 2008.
[20] Z. Yan, H. Jiang, Z. Shen, Y. Chang, and L. Huang, “k-connectivity analysis of one-dimensional linear VANETs,” IEEE Trans. Veh. Technol., vol. 61, no. 1, pp. 426–433, Jan. 2012.