簡易檢索 / 詳目顯示

研究生: 蘇怡恩
Su, Yi-En
論文名稱: 雙負材料光子晶體之光學特性
Optical Properties of One-Dimensional Double-Negative Photonic Crystals
指導教授: 吳謙讓
Wu, Chien-Jang
學位類別: 碩士
Master
系所名稱: 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 61
中文關鍵詞: 光子晶體雙負材料吸收率
英文關鍵詞: Photonic Crystal, Double-negative material, Absorptance
DOI URL: https://doi.org/10.6345/NTNU202201981
論文種類: 學術論文
相關次數: 點閱:186下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文探討的是一維光子晶體的吸收率。藉由TE波順向入射以及逆向入射光子晶體,比較順向與逆向的頻譜,進而找出共振點。
    當順向與逆向在共振點的吸收率相差越多,具有單向性質,代表此共振點的效果越好。近年,含有雙負材料的光子晶體其光學特性格外受到重視,於是我們將研究包含此材料之光子晶體。本論文討論的光子晶體是由雙負材料與雙正材料規律排列所組成。每一章節將會在此光子晶體中加入不同的材料作為缺陷層,這些材料如下:雙負材料、雙正材料以及電單負材料。我們使用 Lorentz model 來表示雙負材料與電單負材料的介電常數與磁導率,並用轉移矩陣法來求得吸收率。觀察改變損耗或材料層數與厚度的光學特性。改變損耗、時,對圖形主要影響為。材料層數的多寡會改變吸收率,進而影響共振點的位置。根據改變不同材料厚度會造成圖形左移或右移。此研究一開始先討論由介電常數與磁導率區分的不同材料,接著將這些材料組成光子晶體,並利用數值方法分析不同條件時的光學特性,即可藉由控制這些條件調變光學特性。

    In this study, we discussed the one-way absorptance of a one-dimensional photonic crystal. To find the resonance point, we compared the spectrums of the TE wave forward and reversed incidence the photonic crystal. The more difference between absorptance of forward and reversed incidence at the resonance point means the better effect to it. In recent years, the optical properties of photonic crystals with double-negative (DNG) materials have received much attention, so in this study we focused on the photonic crystal which contained DNG material. The photonic crystal is composed of the double-negative and double-positive (DPS) materials with regular arrangement. In each chapter, we used different materials which were DNG, DPS and epsilon-negative (ENG) as a defect layer. We used Lorentz model to describe the permittivity and permeability of the DNG and ENG materials, and used Transfer Matrix Method (TMM) to calculate the absorptance. We observed the one-way absorptance of photonic crystal by changing the magnetic loss, electric loss, or the number and thickness of the layers. The effect of magnetic loss to the spectrum is much more obvious than that of electric loss. Numbers of the material layers would influence the absorptance and affect the position of resonance points. According to different thickness of the materials, the spectrum could be shifted to higher or lower frequency. We discussed the materials with different permittivity and permeability, and then reconstructed a photonic crystal with these materials. Furthermore, we calculated optical properties of the photonic crystal with numerical method under different circumstances, and could consequently modulate the optical properties of this photonic crystal.

    摘要 i Abstract ii 致謝 iii 目錄 iv 第一章 導論 1-1 雙負材料簡介 1 1-2 光子晶體簡介 2 1-3 雙負材料光子晶體之應用與研究 3 第二章 以雙負材料為缺陷層之光子晶體特性 2-1 簡介 5 2-2 結構 5 2-3 理論基礎 6 2-3.1 Lorentz model 6 2-3.2轉移矩陣法(Transfer Matrix Method) 7 2-4 分析與討論 9 2-5 結論 23 第三章 以雙正材料為缺陷層之光子晶體特性 3-1 簡介 24 3-2 結構 24 3-3 理論基礎 25 3-3.1 Lorentz model 25 3-3.2轉移矩陣法(Transfer Matrix Method) 26 3-4 分析與討論 27 3-5 結論 41 第四章 以單負材料為缺陷層之光子晶體特性 4-1 簡介 42 4-2 結構 42 4-3 理論基礎 43 4-3.1 Lorentz model 43 4-3.2轉移矩陣法(Transfer Matrix Method) 44 4-4 分析與討論 45 4-5 結論 58 第五章 總結 59 參考文獻 60

    [1] V.G. Veselago, “the electrodynamics of substances with simultaneously negative values of ε and μ”, Sov. Phys. Usp., 10, p. 509 (1968).

    [2] R.A. Shelby, D.R. Smith, S. Schultz, “Experimental verification of a negative index of refraction”, Science, 292, p. 77 (2001).

    [3] R.A. Shelby, D.R. Smith, S.C. Nemat-Nasser, S. Schultz, “Microwave transmission through a two-dimensional, isotropic, left-handed metamaterial”, Appl. Phys. Lett., 78, p. 489 (2001).

    [4] D.R. Smith, W. Padilla, D.C. Vier, S.C. Nemat-Nasser, S. Schultz, “Composite Medium with Simultaneously Negative Permeability and Permittivity”, Phys. Rev. Lett., 84, p. 4184 (2000).

    [5] L. Wu, S. He, L. Chen, “On unusual narrow transmission bands for a multi-layered periodic structure containing left-handed materials”, Opt. Exp., 11, p. 1283 (2003).

    [6] Z. M. Zhang and C. J. Fu, “Unusual photon tunneling in the presence of a layer with a negative refractive index” Appl. Phys. Lett. 80, p.1097 (2001).

    [7] D.N. Chigrin, A.V. Lavrinenko, D.A. Yarotsky, S.V. Gaponenko, “Observation of total omnidirectional reflection from a one dimensional dielectric lattice”, Appl. Phys., 68, p. 25 (1999).

    [8] J.B. Pendry, “Photonic Band Structures”, Opt. 41, p. 209 (1994).

    [9] V.N. Bogomolov, S.V. Gaponenko, A.M. Kapitonov, A.V. Prokofiev, A.N. Ponyavina, N.I. Silvanovich, S.M. Samoilovich, “Photonic band gap in the visible range in a three-dimensional solid state lattice”, Appl. Phys. A 63, p. 613 (1996).

    [10] E. Yablonovitch, “Photonic band-gap structures”, J. Opt. Soc. Am. B, 10, p. 283 (1993).

    [11] S. Satpathy, Z. Zhang, and M. R. Salehpour, “Theory of photon bands in three-dimensional periodic dielectric structures” Phys. Rev. Lett. 64, p. 1239 (1990).

    [12] Hsu, H.T., K.-C. Ting, T.-J. Yang, C.-J. Wu, “Investigation of photonic band gap in a one-dimensional lossy DNG/DPS photonic crystal”, Solid State Comm., Vol. 150, p. 644 (2010).

    [13] R. Srivastava, K. B. Thapa, S. Pati, and S. P. Ojha, “Omni-direction reflection in one dimensional photonic crystal”, Progress In Electromagnetics Research B, Vol. 7, p. 133 (2008).

    [14] S. K. Awasthi, U. Malaviya, S. P. Ojha, N. K. Mishra, and B. Singh, “Design of a tunable polarizer using a one–dimensional nano sized photonic bandgap structure”, Progress In Electromagnetics Research B, Vol. 5, p. 133 (2008).

    [15] C. Caloz, T. Itoh, “Electromagnetic metamaterials: transmission line theory and microwave applications”, John Wiley & Sons, Singapore (2004).

    [16] P. Yeh, “Optical Waves in Layered Media John Wiley & Sons”, New York (1998).

    無法下載圖示 本全文未授權公開
    QR CODE